

Shear Key S1 & S2 Design Alternatives and Testing of A354BD

Seismic Safety Peer Review Panel May 6, 2013

Self Anchored Suspension Bridge

BAY BRIDGE SEISMIC SAFETY PROJECTS

East Bent Elevation

Summary Of Shear Key Design Forces

- Shear key design forces are determined based on the larger of:
- 1.4 x Safety Evaluation Earthquake (Envelope from 6SEE Time-History Analysis)
- 1.15 x Push-Over Analysis using maximum feasible material strengths:
 - Concrete: f'ce = 1.7 f'c
 - Rebar: fye = 1.3 fy

ALL BEARINGS AND SHEAR KETS ARE FUNCTIONAL *LOAD FACTOR FOR DEMAND = 1.4

BACK-UP (REDUNDANCY) FUNCTION

	Component ->	B1	S1	B3	S3	S4	B2	S3	B4
	VERTICAL	Х		Х			Х		Х
Force	LONGITUDINAL**	Х		Х			Х		Х
	TRANSVERSE**	X		Х			X		Х

ALL BEARINGS AND SHEAR KETS ARE FUNCTIONAL/ SHEAR KEYS ARE ASSUMED NON-FUNCTIONAL **LOAD FACTOR FOR DEMAND = 1.0

E2 Bearing and Shear Key

Broken Bolt Location

Shear Key S1 & S2: Alternatives Considered

- Alternative A: Replace Rods in Kind
- Alternative B: Dowel Option
- Alternative C1: Concrete Jacket (Single Layer PT)
- Alternative C2: Concrete Jacket (Double Layer PT)
- Alternative BD1: Dowel / Steel Collar Option
- Alternative BD2: Diaphragm Option

Alternative BD2 Overview

Alternative C2 Overview

TOP PLAN OF CAP BEAM

Alternative BD2: Analysis Model

Alternative BD2: Shear Key Von Mises Stress

Alternative BD2: Tie Down Frame Von Mises Stress

THE SAN FRANCISCO-OAKLAND

SEISMIC SAFETY PROJECT

Alternative BD2: Contact Btw Shear Key and Pier Cap

Alternative BD2: : Anchorage Zone Concrete

Vertical Section Cut at CL of Vertical Tendon

Alternative BD2: Vertical Tendon Stress

Alternative C2 Overview

 Vertical PT: 13x19-0.6 Dia Tendons (each side of shear key

base)

- Top Longitudinal Tendons: 7x9-0.6 Dia Tendons (each side of cap beam)
- Bottom Longitudinal Tendons: 4x9-0.6 Dia Tendons (each side of cap beam)
- Transverse Tendons: 6x12-0.6 Dia Tendons (each side of pier)
- Through-cap Tendons: 9x12-0.6 Dia Tendons (as shown)

TOP PLAN OF CAP BEAM

Alternative C2: Analysis Model

Controlling Seismic Load = 1.4 x Concurrent SEE Loads = 42.5 MN Transv. + 19 MN Long.

> PT considered to be grouted. Constraints of PT to solid elements hidden for clarity

3D solid elements Linear Materials -E_{steel} = 200,000 Mpa -E_{concrete} = 37,400 Mpa -E_{grout} = 67,700 Mpa (composite w/saddle)

K,

D

Alternative C2: Shear Key Contact Conditions

Alternative C2: Deformed Shape

Alternative C2: Contact of Shear Key/Pier Cap

Alternative C2: Contact of Steel Saddle/Shear Key

Alternative C2: Shear Key Von Mises Stress

Alternative C2: PT Stresses

Design Alternatives For Shear Keys S1 and S2

ID Tag	ID Text Label	Image	Major Steps	Major Pros	Major Cons
BD(2)	Steel Collars		 Procure material (PT strands/ steel plate/ bolts) Fabricate steel frame/ transverse steel grillage Tap holes in existing lower housing and prepare surface Core existing concrete and cast supplemental concrete Install steel frame and grillages Grout under steel frame and grillages Tension PT and grout Cast cover concrete 	 Provide full expected earthquake safety (1500 years of recurrence interval) Shear keys do not need to be removed Does not require splitting the bushing 	 Requires more steel fabrication (milling/ welded steel grillages/ bolted steel frame) Requires multiple vertical and horizontal cores Requires an alternative procedure for future bearing replacement
C(2)	Prestressed Collars		 Procure material (PT strands/ steel plate) Fabricate steel frame/ saddle Concrete surface preparation/ drill and bond Core existing concrete Cast concrete jacket Install steel frame/ saddle Grout under saddle Tension PT and grout 	 Provide full expected earthquake safety (1500 years of recurrence interval) Shear keys do not need to be removed Requires fewer horizontal cores and no vertical cores More economical to build Less maintenance 	 Requires concrete jacket Requires complex saddle fabrication Requires splitting of the bushing

Design Recommends Alternative C(2)

Testing Program

GOAL: Determine acceptable levels for sustained pre-tension loads for existing A354 BD. This goal will be reached through a combination of:

- In-Situ Hardness test of representative sample (%)
- Laboratory hardness test of representative sample (%)
- Destructive testing/chemical analysis/metalurgical analysis of a representative sample (%)
- Wet test of a representative sample (%)

In addition, the 2008 bolts are being tested (same as above)

Based on the testing program results:

- Conclude that existing A354 BD at current sustained stress levels are acceptable
- Consider reducing Pre-tension (this will require a fit-for-purpose analysis)
- Replace Rods

E2 Shear Keys (S3 & S4) and Bearings Connection To E2 Capbeam

Equivalent Substitution 192 Rod Replacement Alternatives (2010)

(To be considered in the event that test results indicate that change of existing rods is advisable)

ID Tag	ID Text Label	Nominal Diameter [inch]	Minimum Strength (Fu) [ksi]	Prestress [ratio of Fu]	Pre-Tension Load per Bolt [kips]	Major Pros	Major Cons	Lead Time
1	ASTM A354 BD Rods w/ Supplementary Requirements	3	140	0.7 Fu	585	 Does not require fit-for- purpose evaluation Size of components (rods, spherical washer, spherical nut) works with existing condition 	 Additional requirements above ASTM standards May require removal of grout in pipe sleeve for rod replacement 	- Estimated at 3-4 months
2	ASTM A354 BC Rods	3.5	115	0.61 Fu	585	- Avoids use of high strength material	 Requires machining of bearing bottom housing for larger spherical washer and nut assembly (32 locations) Requires re-evaluation of the bearing bottom housing by FEM analysis to confirm if it is fit-for-purpose Requires reaming of holes of the bearing bottom housing and the shear key bottom housing by 12mm for larger rod diameter (192 locations) Larger diameter bolt removes 12mm of the available tolerance for fit-up Requires removal of grout pipe sleeve for larger diameter rod. Requires modifications to jacking equipment 	- Estimated at 3-4 months
3	DYWIDAG Bars	3" (3.15" max)	150	0.57 Fu	585	 Proprietary alloy and chemistry (strength meets ASTM A722; however, 3" rods are not covered under ASTM A722) 	 Sole-source No standard spherical nuts, washers, and dished plate; but can be designed and manufactured Requires machining of bearing bottom housing for higher spherical washer and nut assembly (32 out of 96 locations) Requires re-evaluation of the bearing bottom housing by FEM analysis to confirm if it is fit-for-purpose Requires reaming of holes of the bearing bottom housing and the shear key bottom housing by 4mm to for larger rod diameter (192 locations) Requires removal of grout in pipe sleeve for larger diameter rod. Require modifications to jacking equipment 	- Estimated at 3 to 4 plus weeks
4	Williams Rod	3" (3-3/64 max)	150	0.60 Fu	581	 Proprietary alloy and chemistry (strength meets ASTM A722; however, 3" rods are not covered under ASTM A722) 	 Sole-source Requires machining of bearing bottom housing for higher spherical washer and nut assembly (32 out of 96 locations) Requires re-evaluation of the bearing bottom housing by FEM analysis to confirm if it is fit-for-purpose Requires reaming of holes of the bearing bottom housing and the shear key bottom housing by 4mm to for larger rod diameter (192 locations) Requires removal of grout in pipe sleeve for larger diameter rod. Requires modifications to jacking equipment 	- 3 to 4 weeks
5	Prestressing Strand	16 strands	270 before losses	0.44 Fu after losses	585	- ASTM A 416	 At bearings (48 out of 96 locations), anchor frame assemblies interfere with the upper housing Requires fabrication of anchor frame assembly Requires reaming of holes of the bearing bottom housing and the shear key bottom housing by 10mm to for strands Requires re-evaluation of the bearing bottom housing by FEM analysis to confirm if it is fit-for-purpose Does not allow for bushing replaceability for both bearings and shear keys Requires removal of grout in pipe sleeve for strands. Requires modifications to jacking equipment 	- strands and anchors readily available; anchor frame assembly time estimated at 6-8 weeks

E2 Shear Keys (S3 & S4) and Bearings Connection To E2 Capbeam

Potential Fit-for-purpose Substitution 192 Rod Replacement Alternatives (2010)

(To be considered in the event that test results indicate that change of existing rods is advisable)

ID Tag	ID Text Label	Nominal Diameter [inch]	Minimum Strength (Fu) [ksi]	Prestress [ratio of Fu]	Pre-Tension Load per Bolt [kips]	Major Pros	Major Cons	Lead Time
6	Existing ASTM A354 BD Rods w/ Reduced Pre- Tension	3	140	< 0.7 Fu	< 585	- Size of components (rods, spherical washer, spherical nut) works with existing condition	- Requires fit-for-purpose evaluation	No lead time
7	ASTM A354 BC Rods	3	115	0.7 Fu	481	 Avoids use of high strength material 	 Requires fit-for-purpose evaluation May require removal of grout in pipe sleeve for rod replacement 	- Estimated at 3-4 months
8	ASTM F1554 Gr. 105	3	125	0.7 Fu	522	- Size of components (rods, spherical washer, spherical nut) works with existing condition	 Requires fit-for-purpose evaluation May require removal of grout in pipe sleeve for rod replacement 	- Unknown

ASTM A354 Grade BD Rods Across SFOBB-SAS

	COMPONENT	REQUIRED QUANTITY	COMPONENT	REQUIRED QUANTITY		COMPONENT	REQUIRED QUANTITY	COMPONENT	REQUIRED QUANTITY
1 E	BEARINGS ANCHOR RODS (2008 - BOTTOM)	96	5 E2 BEARING ASSEMBLY	96	9	TOWER SADDLE TURNED RODS	108	13 TOWER ANCHOR RODS (TYPE 2)	36
2 E	BEARING & SHEAR KEY ANCHOR RODS (2010 - BOTTOM)	192	6 E2 BEARING RETAINER RING PLATE ASSEMBLY	336	10	TOWER SADDLE GRILLAGE	90	14 EAST SADDLE ANCHOR RODS	32
3 E	SHEAR KEY RODS (TOP)	320	7 PWS ANCHOR RODS	274	1 11	TOWER BOOM	4	15 EAST SADDLE THE BODS	10
4 E	BEARING RODS (TOP)	224	8 TOWER SADDLE TIE RODS	25	1 12	TOWER ANCHOR RODS (TYPE 1)	399		10
						i i o nemanene no es (i ne a)	300	16 CABLE BAND ANCHOR BOLTS	24
								17 BIKEPATH ANCHOR RODS	43

ASTM A354 Grade BD Structural Components and Bolt Tension in Service

THE SAN FRANCISCO-OAKLAND

SEISMIC SAFETY PROJEC

Fu (Tensile Strength) per ASTM A354-11

Shear Key S1 & S2: 2008 Rod Testing Program

- I. Visual Examination/Observations
- II. Scanning Electron Microscopy
- **III.** Microstructural Examination
- **IV. Hardness Testing**
 - a. Knoop Microhardness
 - b. Rockwell C Hardness
- V. Tensile Test
- VI. Charpy V-Notch Impact Test
- **VII.** Chemical Analysis (Spectrochemical)

Shear Key Rod LD Grid Plan View (Looking Down)

Test Specimens:

- S1–G1
- S2–A6

Shear Key S3, S4, and Bearing B1, B2, **B3, B4: 2010 Rod Testing Program**

Bay Bridge Anchor Rod Testing (192 Rods)

- 2. Select 10 different rods for extended testing. 10 rod sample size (~ 5%) is larger than ASTM F1470 requirements of 7 bars for lot
- Install acoustic measuring devices on each of the 10 sample rods selected for extended testing.
- 3. Load all 192 rods up to 0.75Fu (with seating loss expected to bring the final tension in the rods down to the Design load of
- 4. Maintain the applied load for 30 days, during which all rods will be visually inspected daily, checking for failures.
- 6. If any rod (of the total lot of 192 rods) fails prior to the 30 day testing period, extract and perform post fracture analysis as
- 7. If no rods fail within the 30 day period, extract the 10 sample rods, transport to a testing facility/load bed.

(Tests listed below to be performed at an independent testing laboratory accredited per ISO 17025 or approved by Caltrans).

- 1. Load the 10 samples to failure. The rods shall be jacked at the same ends as they were jacked during the in-situ testing.

- 5. Perform chemical analysis of broken rods at the threaded area and at the shank. Chemical tests to be performed as detailed in

Plan View (Looking Down)

Note: It is expected that loading of the 192 bolts for 30 days will allow any existing hydrogen atoms to propagate in between the grain boundaries of the steel. Therefore, even if the bolts do not fall within the 30 day period, the scanning electron microscopy will

Plan View (Looking Down)

- S3-E7
- S4-D7
- BC–A2
- B4–A7

Shear Key S3, S4, and Bearing B1, B2, B3, B4: 2010 Rod Wet Testing Program

Pier E2 Anchor Rod "Wet" Test Test Rig Design

LAYOUT PLAN

Pier E2 Anchor Rod "Wet" Test General Arrangement

A354BD Rod Tensile Strength = 4.5 MN (w/ 1.2 overstrength factor) Jack Capacity (2 jacks) = 6.3 MN Nominal Capacity of Test Rig = 12.4 MN

Pier E2 Anchor Rod "Wet" Test General Arrangement

