

L.Raymond & Associates

A Professional Consulting Corporation P: (949) 474-0218 - F: (949) 474-9807

Test V Stress Corrosion Cracking Evaluation of ASTM A354 Grade BD Rods

5 June 2015

LRA Report #TYL'13-0901 Test V

Prepared for

Caltrans 333 Burma Road Oakland, CA 94607

Prepared By: LRA Mailing Address: POB10239 Newport Beach, CA 92658 Location: 20261 SW Acacia St., Suite 120 Newport Beach, CA 92660 Phone: 949 474-0218 LRA@LouRaymond.com

Note: The information and test results provided in this report are representative of the components tested and does not extend to materials processed in different batches or lots. LRA accepts no responsibility or liability for any results due to non-representative test items, improper sampling, insufficient testing, or misinformation. LRA reserves the right to make changes and revisions to this report as additional information becomes available. The information in this document is the property of LRA and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied, without the express written consent of LRA. It is LRA policy to retain components and sample remnants for 60 days from the date of this report, after which time they may be discarded. If you would like to make alternate arrangements for the disposition of the material, please contact LRA.

Materials ______ Engineering _____ Research _____ Testing _

Table of Contents

1	Obje	jective1								
	1.1	Test	t V Rods	1						
2	Test	t V Te	est Protocol and Test Rigs	2						
	2.1	Terr	ninology and Symbols	2						
	2.2	Test	ting Equipment	2						
	2.2.2	1	Test Machine	2						
	2.2.2	2	Fixtures	3						
	2.2.3	3	Test Environment	3						
	2.2.4	4	Potentiostatic Control	3						
	2.3	Test	t Protocol Details	4						
	2.3.3	1	Specimen Machining	4						
	2.3.2	2	Specimen Preparation	7						
	2.3.3	3	Hardness Test	7						
	2.3.4	4	Fatigue Pre-cracking	7						
	2.3.5	5	Fast-Fracture Testing	7						
	2.3.0	6	RSL™ Testing	7						
	2.3.	7	Impact after Test	9						
	2.4	Test	t Method Validation	9						
	2.5	Frac	ture Mechanisms	10						
3	Test	t V Re	esults	13						
	3.1	KIc.		14						
	3.2	IHE	Threshold	15						
	3.3	EHE	Threshold	16						
	3.4	Rem	nnant Thresholds	17						
4	Test	t V Di	scussion	18						
	4.1	Kma	эх	18						
	4.2	Klc.,		19						
	4.3	IHE	Thresholds	20						
	4.4	EHE	Thresholds	21						
	4.5	Spe	cial Projects	22						
	4.5.2	1	Objective	22						
	4.5.2	2	Open Circuit Potential	22						

	4.5.3	8 Evaluating Plane Strain Performance of Threaded Specimens	26					
	4.5.4	31						
	4.5.5	34						
	4.5.6	5 Crack Initiation Analysis in 2008 Rod Dead-End	37					
5	Test	V Conclusions	42					
6	Abbr	reviations, Acronyms, and Symbols	43					
	6.1	Abbreviations and Acronyms	43					
	6.2	Symbols	44					
7	' References							

List of Figures

Figure 2.2-1: RSL Bend Test Machine, Manufactured by www.FractureDiagnostics.net	3
Figure 2.2-2: FEM Analysis of IR Drop	4
Figure 2.3-1: ASTM E1290, 0.4W-SEN(B), fpc	5
Figure 2.3-2: Modified ASTM E1290 SEN(B), Thd	5
Figure 2.3-3: Machining Plan for a 3-inch Diameter Rod	6
Figure 2.3-4: Rod Segment with Specimens Removed	6
Figure 2.3-5: Schematic of a (10/5/2,4) Step Load Profile	8
Figure 2.3-6: Definition of Crack Initiation Load, Threshold Load, and Yielding	8
Figure 2.5-1: RSL Software Test Results for Specimen 3-V-11 Thd 4	10
Figure 2.5-2: Cracking of a Rolled Thread: a) Side Profile of Thread Root, b) Thread Root Magnified	ל 50X,
c) Thread Root Magnified 500X , d) Crack Propagation Magnified 500X	11
Figure 2.5-3: a) RSL curve for Rod 4-V-1, SN Thd 5, b) Magnified Load Drops	12
Figure 4.1-1: Maximum Achieved Stress Intensity Factors During Fast Fracture Testing	18
Figure 4.2-1: KIctod Estimates for Fracture Toughness	19
Figure 4.3-1: Results of RSL IHE Testing for Both fpc and Thd Specimens	20
Figure 4.4-1: Results of RSL EHE Testing for Both fpc and Thd Specimens	21
Figure 4.5-1: OCP Measurement in 3.5% NaCl in Beakers	23
Figure 4.5-2: OCP Measurement Set-up	24
Figure 4.5-3: OCP vs Time for Three Typical Rods	25
Figure 4.5-4: OCP Results for Remnant B1-F4	25
Figure 4.5-5: Specimen Drawing of 1.0B SEN(B)	27
Figure 4.5-6: Typical EHE Fracture Face of 0.4B SEN(B) Specimen	27
Figure 4.5-7: EHE Fracture Face of 1.0B SEN(B) Specimen	28
Figure 4.5-8: Effect of Hardness on KIp-EHE and KIscc at -1.106Vsce	30
Figure 4.5-9: Bare Specimen (Top) and Galvanized Specimen (Bottom)	31
Figure 4.5-10: Crack Progression in Thread Root of Bare Specimen	32
Figure 4.5-11: Crack Progression in Thread Root of Galvanized Specimen	32
Figure 4.5-12: SEM Photograph of Dimple Rupture Failure Mode	35
Figure 4.5-13: SEM Photograph of Hydrogen Embrittlement Failure Mode	36
Figure 4.5-14: SEM Photograph of Cleavage Failure Mode	36
Figure 4.5-15: SEM Photograph of mixed IG and Dimpled Fracture Modes	37
Figure 4.5-16: Pre-existing Crack in Threaded Specimen cut from Rod 1-V-S2-A2-D	38
Figure 4.5-17: Fracture Face of Pre-existing Crack in 2008 Dead End	39
Figure 4.5-18: SEM of Fracture Mode Regions in pre-existing crack	39
Figure 4.5-19: Fracture Face of Rod 1-V-S2-A2-D Thd 5	40
Figure 4.5-20: SEM of Failure Mode Regions of Sample 1-V-S2-A2-D Thd 5	41

List of Tables

Table 1.1-1 SAS A354 Grade BD Test V Bolt Sampling (2)	1
Table 2.5-1: Results of Fast Fracture Test Showing Kmax	
Table 3.1-1: Results of Fast Fracture Test Showing KIctod	14
Table 3.2-1: Results of IHE RSL Tests Showing KI-IHE and KIp-IHE	15
Table 3.3-1: Results of EHE RSL Tests Showing KIscc and KIp-EHE	
Table 3.4-1: Results of Remnant FFS and EHE RSL Tests Showing Kmax and KIp-EHE	
Table 4.5-1: Typical Values for OCP Over 48 Hours	24
Table 4.5-2: Test V OCP Results	
Table 4.5-3: Ratio of Applied Stress to Stress Intensity Factor for Wide and Standard Geometry	3-V-12
Threaded Specimens	
Table 4.5-4: Results from Testing 1.0B SEN(B) Specimens from Rod 3-V-12	
Table 4.5-5: Results from Testing Standard Specimens from Rod 3-V-12	
Table 4.5-6: Results from Testing High Hardness Specimens	
Table 4.5-7: Results of Zinc Cracking Experiment	
Table 4.5-8: Results of EHE RSL Testing of Bare and Galvanized Specimens	

Executive Summary

In March 2013, ninety-six high-strength steel rods installed on the lower housing of Shear Key S1 and Shear Key S2 at Pier E2 of the San Francisco-Oakland Bay Bridge, SFOBB, were loaded to their design load of 70% of their specified minimum ultimate tensile strength or Force ultimate, Fu. Within fourteen days, 32 of the 96 ASTM A354 Grade BD rods fractured. A metallurgical investigative team was tasked with examining the cause of the failures of the high-strength steel rods. Based on an examination on two of the extracted high-strength steel rods, the metallurgical investigation team on 07 May 2013 attributed the rod failures to hydrogen embrittlement, HE; that is a time-delayed crack growth mechanism following exposure to hydrogen and results in an in-service fracture of the rods. **(1)**

Subsequently, an extensive six part testing program was developed and performed to address the condition of the remaining bolts on the bridge. Test I, Test II, and Test III were performed to evaluate the mechanical properties of sample rods. Test IV was performed to evaluate the full-size performance of sample rods tested in tension when subjected to a HE environment. Test V was performed to provide statistical substantiation to Test IV. Small, single edge notched fatigue pre-cracked, fpc, and threaded, Thd, specimens were tested in bending, SEN(B), in accordance with ASTM F1624/F2660 when subjected to a stress corrosion cracking, SCC, environment. Test VI used long-term sustained load tests, SLT, in accordance with ASTM E1681 to further substantiate the environmental hydrogen embrittlement, EHE, stress intensity thresholds determined by the Rising Step Load, RSL[™], slow strain rate test method in Test V. (2)

The specific objectives of Test V were to determine the SCC threshold stress intensity factor for the material (**KIscc**) and thread root (**KIp**-EHE) of the various groups of rods and use this information to independently determine the threshold loads for the Self-Anchored Suspension Span, SAS, rods. *This report lists the findings from the testing performed at L.Raymond & Associates, LRA, in Newport Beach, CA for Test V.* (3)(4)(5)(6)

Test V showed that since many specimens can be obtained throughout a cross section of a 2.5-inch long threaded rod segment, the effects of varying manufacturing and environmental variables, such as the effect of potential on the EHE stress intensity threshold, can be evaluated. Additional fractographic analysis was conducted by using a Scanning Electron Microscope (SEM) on the tested specimens whose fracture surfaces were produced under known testing conditions, for comparison to the results of the post fracture analysis (PFA) of the threaded rods in Test IV.

The rods were thoroughly characterized metallurgically relative to Rockwell C Hardness Scale (**HRC**) Open Circuit Corrosion Potential (**OCP**) of the coating, fast fracture strength (**Kmax**), fracture toughness (**KIc/KIctod**), internal hydrogen embrittlement, IHE, and EHE at the mid-radius, MR, and outside diameter, OD, of the rod samples when exposed to a 3.5% salt water environment with an applied potential simulating the galvanic coupling effect of the hot-dipped galvanized zinc coating. The centers, C, of the rods were characterized metallurgically relative to HRC and KIc/KIctod.

IHE is hydrogen embrittlement due to processing that is measured when testing in air. EHE is hydrogen embrittlement due to environmental exposure that is measured when testing in a hydrogen-charging environment under conditions of galvanic coupling such as in the salt water under an imposed cathodic potential versus a Saturated Calomel Electrode, SCE. SCC and Environmentally Assisted Cracking, EAC, are generic expressions often used interchangeably for cracking in a corrosive environment, most often under stress. For the purpose of this report, SCC will be used.

Different loading rates were analyzed with the RSL testing rig. Fast fracture strength, FFS, incremental step loading, ISL, in air and in a corrosive environment were performed on a bend or tensile RSL frame in accordance with ASTM F1624 test procedure that provides an accelerated method to measure the threshold stress or threshold stress intensity factor for the onset of SCC in steel (designated KIscc, **KI**-IHE, or with the prefix **KIp** for Thd specimens with root radius, ρ , in Test V). (7) The procedure conforms to and is based on determining the onset of subcritical crack growth with a step-modified, progressively decreasing strain rate test under displacement control.

Throughout testing, many additional topics surfaced that did not fit into the procedures of Test V. These topics are introduced as special projects in supplementary Section 4.5. This section is set up with individual topics that are addressed with their own results, discussion, and conclusion. Some of the special projects included are on the evaluation of zinc cracking, OCP, SEM comparisons of fractographic features, and other noteworthy matters.

Of the 18 rod samples provided to LRA for Test V, it was concluded that the rod failure was due to SCC from the service environment instead of galvanizing inducing IHE. Correlations found in Test V for variation in both hardness and applied potential allowed Test V results to be adjusted to Test IV conditions. As a result, the Test IV results were successfully verified from the adjusted Test V results, thus validating the Test V protocol and analysis.

Respectfully,

L.Raymond & Associates A Professional Consulting Corporation

WR Crumky

William Crumly, P.E. (CA) Manager of Technical Operations / LRA Labs

L.Raymond & Associates A Professional Consulting Corporation

NUMO

Louis Raymond, Ph.D., P.E., FIAE, FASTM Director of Technical Operations / LRA

1 Objective

The objectives of Test V were to determine the fracture toughness and IHE and EHE stress intensity thresholds of the materials supplied to LRA from the various groups of rods to independently determine the threshold load for hydrogen induced stress cracking in SAS bridge rods.

1.1 Test V Rods

The rods tested as part of Test V varied in diameter from 2-inches to 4-inches so that the cross section of the rods was large enough to allow many specimens to be obtained throughout a cross section of a 3-inch-long threaded rod segment allowing the effects of varying manufacturing and environmental variables, such as the effect of potential on the HE threshold of the full sized threaded rods can be evaluated.

ID	Structural Component	Number of Bolts	Nominal Bolt Diameter [in]	Sustained Bolt Tension % Fu (UTS)	Threads (Cut or Rolled)	Test V RSL Technique
1	Shear Key Anchor Bolts- Bottom (S1/S2)	96	3	0.7	Cut	2
2	Shear Key Anchor Bolts- Bottom (S3/S4)	96	3	0.7	Cut	
2	Pier E2 Bearing Bolts- Bottom Housing (B1, B2, B3, B4)	96	3	0.7	Cut	
2	Shear Key Anchor Bolts-Top (S1/S2)	160	3	0.7	Cut	4 (spares)
	Shear Key Anchor Bolts-Top (S3/S4)	160	3	0.7	Cut	
4	Pier E2 Bearing Bolts- Top Housing (B1,B2,B3,B4)	224	2	0.7	Rolled	2 (spares)
5	Spherical Bearing Bushing Assembly Bolts	96	1	0.61	Cut	
6	Bearing Retainer Ring Plate Assembly Bolts	336	1	0.4	Cut	
7	PWS Strand Anchor Rods (Main Cable)	274	3.5	0.32	55 Cut, 219 Rolled	4***
8	Tower Saddle Tie Rods	25	4	0.68	Rolled	1 (spare)
٥	Tower Saddle Turned Rods (@ Splices)	100	3	0.45	Cut	
9	Tower Saddle Turned Rods (@ Splices)	8	3	0.1	Cut	
10	Tower Saddle Grillage Bolts	90	3	0.1	Cut	
11	Tower Outrigger	4	3	0.1	Cut	
12	Tower Anchorage Anchor Bolts (75 Dia. Anchor Bolts)	388	3	0.48	Cut	2
13	Tower Anchorage Anchor Bolts (100 Dia. Anchor Bolts)	36	4	0.37	Cut	1
14	East Saddle Anchor Rods	32	2	0.1	Cut	
15	East Saddle Tie Rods	18	3	0.2	Cut	
16	Cable Bracket Anchor Rods	24	3	0.16	Rolled	
17	Bikepath Anchor Bolts at Pier W2	43	3	0.1	Cut	
18	E2 2013 Replacement Rods (CCO 312)	40	3	0.7	Cut	2 (spares)

Table 1.1-1 SAS A354 Grade BD Test V Bolt Sampling (2)

*** samples with rolled thread and cut thread

Fractographic analysis was conducted by using a SEM on the tested specimens whose fracture surfaces were produced under known testing conditions, as supplementary information to the results of the PFA of the threaded rods in Test III and Test IV. **Table 1.1-1** summarizes the ASTM A354 Grade BD bolt locations on the SFOBB and information used in Test V. (2) In addition, the rod samples were thoroughly characterized metallurgically relative to HRC, OCP of the coating, KIc/KIctod, IHE, and EHE at the MR and OD of the rod samples when exposed to a 3.5% salt water environment with an applied potential simulating the galvanic corrosion effect of zinc coating. The centers of the rods were characterized metallurgically relative to HRC and KIc/KIctod.

2 Test V Test Protocol and Test Rigs

The current ASTM standards were used unless noted otherwise for each rod sample provided for Test V:

- 1. ASTM E8 (fast fracture strength),
- 2. ASTM E18 (HRC),
- 3. ASTM E23 (notched bar impact testing of metallic materials),
- 4. ASTM E399/E812/E1290 (fracture toughness),
- 5. ASTM F1624 (IHE, EHE, and SCC threshold),
- 6. ASTM F2078 (HE terminology),
- 7. ASTM G3 (Electrochemical cell) and
- 8. ASTM G129 (Strain rate for EAC)

Fatigue pre-cracked specimens were used to determine the material Fracture Toughness properties (KIc/KIctod/KIscc) in accordance with ASTM F1624 and the other referenced specifications. Tests to determine KIp, the effective threshold stress intensity factor in a salt-water environment for the threaded and galvanized conditions used a specimen with the threads intact. The KIp tests conformed to all other F1624 requirements and were used to directly predict the performance of the threaded rod in service and in Test IV.

2.1 Terminology and Symbols

The terminology used throughout this report can be found in ASTM F2078 HE terminology and Section VI Abbreviations, Acronyms, and Symbols.

2.2 Testing Equipment

2.2.1 Test Machine

Testing was conducted using a computerized, four-point bend, digital displacement controlled loading frame that is capable of stepping in 0.5% load steps and is programmed to increase incrementally in steps of load and time to vary the strain rate at the root of the notch between 10^{-4} and 10^{-9} s⁻¹. RSL bend test machines manufactured by Fracture Diagnostics International, FDI, were used for this test program (see **Figure 2.2-1**).

Figure 2.2-1: RSL Bend Test Machine, Manufactured by <u>www.FractureDiagnostics.net</u>

2.2.2 Fixtures

A schematic of the adapters used during this study is shown in **Figure 2.2-1**. The adapters transmit the measured load applied by the testing equipment to the fpc and thread modified ASTM E1290 SEN(B) test specimen.

2.2.3 Test Environment

Testing was conducted in two environments. FFS tests and IHE tests were conducted in air. The EHE test specimens were immersed into a 3.5% NaCl solution under potentiostatic control by imposing a galvanic cathodic potential in 3.5% NaCl solution contained in an appropriate inert container.

2.2.4 Potentiostatic Control

The corrosion potential of the specimen was controlled with reference to a Saturated Calomel Electrode (SCE), and the potential is referred to as Vsce. The imposed potential was cathodic and ranged from - 0.85 Vsce to -1.2 Vsce in a 3.5% NaCl solution with the majority of the testing performed at -1.106 Vsce. The manufacturer's recommended allowable variation between SCE reference electrodes is 50 mV, however LRA experience is that if the current flowing through the electrode is minimized, the variation will be less than 10 mV. The auxiliary or counter electrode used for the testing was a length of platinum wire located at the end of the chamber opposite of the specimen. The reference electrode was located so that the end of the electrode was within 1-inch of the specimen under test. Analysis of the test chamber utilizing Ohm's law, V = IR, found that the voltage drop due to solution resistance for a typical test was less than one mV when the SCE electrode is located within 1-inch of the specimen. **Figure 2.2-2** shows the IR voltage drop distribution within the test solution for a test in the RSL test chamber when test current is 5 mA, which is the typical current for EHE test in 3.5% NaCl.

Figure 2.2-2: FEM Analysis of IR Drop

2.3 Test Protocol Details

2.3.1 Specimen Machining

Rod samples were received at LRA and visually examined for general condition and major defects. Full diameter rod samples varied in length from 6-inches to 24-inches. Charpy-sized specimens were cut from 2.5-inch long rod segments using electric discharge machining, EDM.

Two types of specimens were prepared. One type of specimen was cut from the interior of the segment. ASTM E1290-99, single edged notched bend, 0.4W SEN(B) specimens were cut from the interior of the rod to Charpy-sized dimensions of 0.4 inch wide by 0.4 inch thick by 2.25 inches long. A slot, 0.1 inch deep, was cut by EDM in the center of each specimen as a starter slot for fatigue pre-cracking. The location from which an interior specimen was removed was noted and specimens were tested as outer diameter, mid-radius, or center specimens (OD, MR, and C).

The second type of specimen was cut from the outer edge of the segment and included the thread and the hot dipped galvanized zinc, HDG-Zn, coating. These threaded specimens were cut from both spare rods and remnants from Test IV. The nominal dimensions of the threaded specimens were 0.61 inch wide (0.61W) by 0.4 inch thick (0.4B) by 2.5 inches long. A section was removed from the backside of the specimen to reduce the specimen width at the thread root to 0.55 inch. The two types of specimens are shown in **Figure 2.3-1** and **Figure 2.3-2**.

Figure 2.3-1: ASTM E1290, 0.4W-SEN(B), fpc

Figure 2.3-2: Modified ASTM E1290 SEN(B), Thd

The Rod identification is as follows: "location ID"-"test number"-"rod sample identification". For example Rod ID, 3-V-9, is an E2 shear key upper rod (location ID #3, see **Table 1.1-1**), used in Test V, identified as rod sample 9. Each specimen cut from a Rod ID has a sample number, S/N. Rod ID can consist of S/N's such as OD1, MR2, C1, and Thd4. Since there are two specimens cut from the outer diameter, one fpc, OD_{fpc}, and one Thd, OD_{Thd}, the term OD without a subscript refers to an OD fpc specimen, and the term Thd refers to an OD Thd specimen. The distribution of specimens in a 3 inch rod is illustrated in **Figure 2.3-3** and **Figure 2.3-4**.

Figure 2.3-3: Machining Plan for a 3-inch Diameter Rod

Figure 2.3-4: Rod Segment with Specimens Removed

2.3.2 Specimen Preparation

After the specimens were removed from the rod by EDM, they were lightly sanded and cleaned. The SEN(B) specimens were wet sanded with 240, 320 and/or 600 grit sandpaper to remove EDM recast (a thin coating of molten material re-deposited on the specimen during the EDM process). Specimens were then cleaned in an Alconox cleaning solution, rinsed in acetone, and dried.

2.3.3 Hardness Test

The hardness of each specimen was measured using a Rockwell Hardness Tester (Wilson Instrument Division, American Chain and Cable Co.). A Rockwell Hardness C (**HRC**) scale was used in accordance with ASTM E18. The hardness was measured at six points on the side of the specimen spanning its length. The highest and lowest readings were discarded and the remaining four measurements were averaged. The hardness was used to estimate the ultimate tensile strength of the specimen using ASTM E140.

2.3.4 Fatigue Pre-cracking

Prior to testing, 0.4W-SEN(B) Charpy-sized bend specimens were fatigue pre-cracked. The EDM slot was extended by fatigue approximately 0.08 to 0.10 inches to an a/W \approx 0.5. The precise depth of the pre-crack was measured following testing. The final stress intensity factor used during fatigue pre-cracking (typically 15 ksi \sqrt{in}) was less than 60% of the measured stress intensity factor for crack initiation (which is typically 25 ksi \sqrt{in} to 35 ksi \sqrt{in}). A Physmet FCM-300B pre-cracking machine was used to pre-crack the specimens as required. This unique piece of equipment uses constant displacement rings to produce cracks ranging from 0.005 inches to 0.250 inches in fewer than 10 minutes. Threaded specimens were not fatigue pre-cracked.

2.3.5 Fast-Fracture Testing

To provide baseline reference data for each rod and specimen type, a specimen of each rod and type is tested to rupture using a rate consistent with ASTM E8. This establishes a fast-fracture strength, load (**PFFS**), and stress intensity factor for a given specimen geometry. These variables are noted by FFS or max and are obtained from the maximum value achieved in the FFS test for the fpc and Threaded specimens.

2.3.6 RSL[™] Testing

The test procedure provides an accelerated method to measure the threshold stress or threshold stress intensity factor for the onset of SCC in steel. The procedure conforms to ASTM F1624 and is based on determining the onset of subcritical crack growth by a load drop during a step-modified, progressively decreasing strain rate test under displacement control. The threshold load, Pth, is obtained on completion of a minimum of two tests. The threshold is the lowest value of two consecutive tests when the difference between them is within 5% of the fast-fracture strength, FFS. Once an invariant value is obtained, no further tests are required. Otherwise, additional tests must be performed following the protocol of Section 8.1.6 in ASTM F1624 until an invariant value within 5% of FFS is obtained from two consecutive tests. Of the two tests, the lowest value will be used. For example, if the FFS of a specimen is 100 lbs and the first EHE test had a load of 35 lbs and the second EHE test had a load of 32 lbs, the threshold load would be 32 lbs, because the two EHE tests were within 5 lbs (5% of FFS) of each other. Since an invariant value was obtained, no further tests would be required.

A typical (10/5/2,4) step load profile progression of tests to determine the threshold for steel \geq 33 HRC to 45 HRC from Section 8.1.6 in ASTM F1624 is shown **Figure 2.3-5**. With the loading profile of (10/5/2,4), a specimen is loaded to reach a target load, P_{target}, in 10 steps with a dwell time of 2-hours

between each step and 10 steps with a dwell time of 4-hours between each step, resulting in 20 steps each with a magnitude equal to 5% of P_{target}.

The curve at the left labeled "ASTM E8" shows the load/time curve for the fast-fracture test that determines the FFS and PFFS. The first RSL test is performed at 5% steps of PFFS (which is Ptarget) initially 10 each, two-hour steps followed by four-hour steps until the specimens fracture (labeled Pi-1) and the step before the fracture step is the threshold load (labeled Pth-1). The next test is performed with steps of 5% of Ptarget, which is 1.1 times Pth-1 to find Pth-2, and so on as shown in **Figure 2.3-5** from ASTM F1624.

ASTM F1624 was originally developed for testing aerospace steels with a hardness of 50 HRC. Because of the low-strength steel being tested, the net-section stress in bending at which the sub-size specimen cracks is likely to be above the yield stress of the steel. At these stress levels, significant plastic deformation at room temperature is possible and will produce a load drop that can be confused with crack extension. **Figure 2.3-6** shows the load drop curvature that can be used to separate the crack initiation load from yielding from ASTM F1624.

Figure 2.3-5: Schematic of a (10/5/2,4) Step Load Profile

Figure 2.3-6: Definition of Crack Initiation Load, Threshold Load, and Yielding

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Hydrogen embrittlement or stress corrosion cracking will produce an accelerating curve that appears as a concave downward Type A load time curve as shown in **Figure 2.3-6:** . On the other hand, yielding will produce a Type B load time curve that is concave upwards.

Often, cracking will initiate after some delay in a step and after yielding starts. When this occurs, the curve will take on a sigmoidal shape as shown in **Figure 2.3-6** as a Type C curve. If the test does not attain a load drop of 5%, the test will increase to the next load step, generating a serrated load-time curve above the threshold. To separate the threshold load from yielding, a change in specimen compliance is measured.

Multiple specimens are tested per ASTM F1624. By decreasing the load step, the strain rate is decreased from specimen to specimen. The minimum or invariant value of the stress intensity factor (KIscc, KI-IHE, KIp-EHE or **KIp-IHE**) or stress for a given geometry with regard to the loading rate before the onset of crack growth is defined as the threshold for the onset of crack growth due to HE.

2.3.7 Impact after Test

After RSL testing has been completed, the specimen is ultrasonically cleaned in Alconox followed by acetone and dried in air. The specimen is then baked at 400°F for one hour to heat tint the cracked surface and then broken by impact per ASTM E23 to expose the fracture face using the CIM-24 Physmet Charpy Impact Machine. This machine is capable of testing materials with energy capacities up to 24 ft-lbs at room temperature. Heat tinting aids any subsequent SEM examination by marking the extent of SCC cracking.

For fatigue pre-cracked specimens, the actual length of the pre-crack cannot be measured until after the test is complete and the specimen is broken open. In addition, for the fatigue pre-cracked FFS test, heat tinting allows the extent of crack tearing to be measured to ensure that a valid crack tip opening displacement, CTOD, test was performed.

For threaded specimens, the energy capacity to break an EHE test specimen at room temperature was more than 24 ft-lbs. This resulted in the threaded test specimens being immersed in liquid nitrogen (LN₂) before being impacted to reduce the energy needed to fracture.

2.4 Test Method Validation

The threshold load measured with Charpy-sized specimens for the rods in Test V can be used to calculate a threshold load for full size rods as a ratio to Fu for the rods. This calculation was validated three ways:

- 1. Fracture mechanics was used to relate a measured threshold stress intensity factor for the threaded specimens loaded in bending to the threshold load for the corresponding full size threaded rod loaded in tension. (2)
- 2. Finite Element Analysis was used to relate the local maximum Strain Energy Density, SED, of threaded Charpy-sized specimens loaded in bending to the local maximum SED for the corresponding full size threaded rod loaded in tension. (2)
- 3. Test V data for rods corrected for applied potential and hardness predicted failure loads for corresponding rods tested as part of Test IV. (2)

All three methods are independent from each other and each validated the use of threaded Charpysized specimens loaded in bending to determine the threshold load for full size threaded rods loaded in tension.

2.5 Fracture Mechanisms

During the testing of the rods with cut threads it became apparent that the failure mechanism during the RSL test was more complex than anticipated.

Examination of the RSL load/time curve for the threaded specimens found that the system spring rate (measured as the inverse of compliance) changed significantly at a load step that was typically well below the load at which visible cracking was detected. **Figure 2.5-1** shows a typical RSL test curve. The blue curve shows the change in spring rate or stiffness (**k**) at each step and the red plot is the stress intensity factor vs time. The spring rate starts to fall at the load where the stress is approximately the yield strength and is most likely caused by local yielding of the specimen at a hydrogen susceptibility ratio (**Hsr**) of 0.7 of 118 ksi. However, the spring rate changes again at 172 ksi. This spring rate change can only be explained by the formation of cracks at the thread root of the specimen. The RSL software automatically performs the calculations necessary to determine the threshold load step using this spring rate (or compliance) method for detecting cracking and the threshold loads reported in this report were determined using this digital analysis technique.

The Hsr is a ratio of the local net section stress under SCC relative to the steel's tensile strength. Low alloy steel yields at values of around 0.7 Hsr. When the Hsr is greater than 0.7, yielding will occur before SCC.

The onset of cracking corresponding to the change in spring rate was verified by performing tests with longer dwell times allowing visual confirmation of cracking. When the test dwell time is 8-hours or longer, the onset of EHE cracking is at the same step as this break in the spring rate for a test with 4-hour steps. This verifies that the break in spring rate for the testing performed with 4-hour steps was due to crack initiation.

Figure 2.5-1: RSL Software Test Results for Specimen 3-V-11 Thd 4

During the testing of some of the rods with rolled threads it became apparent that the failure mechanism during the RSL test was more complex than the failure mechanism for the cut threads. For rolled threads, the case or hardener outside layer is typically greater than 20 mils thick at a hardness that may be 40 HRC to 45 HRC.

It appears that cracking extends through the rolled microstructure in steps, arresting as it reaches lower hardness material and then extending parallel to the thread root forming a crack blunting mechanism. At the next load step the crack would extend a short distance and then arrest again. **Figure 2.5-2** shows the appearance of a crack progressing through the lamellar microstructure at the thread root of a rolled thread. Photo a) of **Figure 2.5-2** shows the thread root splintering and crack lifting away, photo b) shows the thread root magnified 50X showing splintering and lifting of the crack, photo c) shows the thread root magnified 50X showing the crack extending through the steel in steps forming a structure that looks like a brick wall, and photo d) shows cracks propagating through the rolled structure magnified 800X. The rolled grain structure causes small cracks to arrest and extend parallel to the direction of the rolled microstructure creating cracks similar to a "Smiley Face — \bigcirc " that have a crack blunting effect. Cracking will continue only upon increasing load during the following load step. Eventually cracking will extend through the rolled microstructure sufficiently to initiate cracking in the more equiaxed microstructure (grains of equal length) of the bulk of the specimen, showing as a continuous load drop in the test curve.

Figure 2.5-2: Cracking of a Rolled Thread: a) Side Profile of Thread Root, b) Thread Root Magnified 50X, c) Thread Root Magnified 500X , d) Crack Propagation Magnified 500X

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Figure 2.5-3 shows a typical RSL curve for a specimen with rolled threads showing minor load drops consistent with small crack extensions. This specimen initiated cracking at a stress intensity factor around 80 ksi \sqrt{in} . Two load drops of about 1-pound can be seen as delineated by the arrows. Compliance analysis of the RSL load frame and threaded specimen found that a 1-pound load drop corresponded to a crack extension of approximately 0.001 inch.

Figure 2.5-3: a) RSL curve for Rod 4-V-1, SN Thd 5, b) Magnified Load Drops

Specimens displaying these small load drops showed no other evidence of cracking until cracking initiated that was detected by a visual load drop. Not all specimens with rolled threads displayed this phenomena. The rods that did were identified with rods that had an M-shaped hardness profile (hardness profile across the cross section where the hardness decreased near the rod outside diameter) and had significantly improved threshold Fu. Rods that did not have an M-shaped hardness profile did not display this cracking/arrest load profile, but still had a threshold Fu that was slightly superior to rods with cut threads.

3 Test V Results

The stress intensity factor threshold test results for the eighteen bolt samples and additionally six remnant samples were machined from remnant rod samples in Test IV (introduced in Specimen Machining, Section 2.3.1) are listed in **Table 3.1-1** through **Table 3.5-1**. The significance of the tabulated results is discussed in Section 4.1 through Section 4.4.

The grey cells in the tables represent specimens with machining defects and 2-inch diameter rods that could not machine an OD fpc specimen.

The maximum stress intensity values, Kmax, calculated from the maximum load achieved in the Fast Fracture Strength test, FFS, for the fpc and Threaded specimens from Test V are listed in **Table 3.1-1**. Kmax is a measure of the maximum stress intensity that can be measured by the specimen.

LRA-Fast Fracture Strength Kmax												
							Fatigue Pre-	cracked (fpc)			Thre	aded
ID	Structural Component	Dia.	Rod ID	Comment	Cer	Center		MR		OD		nd
					HRC	Kmax	HRC	Kmax	HRC	Kmax	HRC	Kmax
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-1	2010 Material Rolled Threads	33.5	86.1	36.0	85.4			36.0	96.6
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-2	2010 Material Rolled Threads	33.0	83.2	35.5	84.3			36.0	98.1
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-A	2008 Material Top of Rod (Live End)	31.5	74.1	35.5	78.9	37.0	84.9	36.5	98.5
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-D	2008 Material Near Fracture (Dead End)			32.0	78.0	36.0	84.3	36.0	95.1
3	Shear Key Rods - Top (S1/S2)	3"	3-V-9	2010 Material Machined Threads	30.5	80.9	32.5	81.6	36.0	86.4	35.5	99.9
3	Shear Key Rods - Top (S1/S2)	3"	3-V-10	2010 Material Machined Threads	31.5	77.2	31.5	79.4	36.0	85.3	36.0	98.9
3	Shear Key Rods - Top (S1/S2)	3"	3-V-11	2010 Material Machined Threads	28.0	72.2	33.0	80.9	35.0	86.2	35.5	99.8
3	Shear Key Rods - Top (S1/S2)	3"	3-V-12	2010 Material Machined Threads	31.0	77.1	34.0	79.2	36.0	85.3	36.0	99.4
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-b2E-4	2006 Material Machined Threads	30.0	79.5	37.0	86.2	37.5	90.7	36.5	97.5
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-E109	2006 Material Machined Threads	31.5	82.1	37.0	86.2	38.0	92.1	38.0	89.7
18	2013 E2 Replacement Anchor Rods Non-Galvanized	3"	18-V-1	2013 Material Machined Threads	33.5	84.9	35.5	88.8	35.5	91.1	35.5	100.0
18	2013 E2 Replacement Anchor Rods Galvanized	3"	18-V-2	2013 Material Machined Threads	33.0	87.0	35.0	88.5	35.0	91.4	35.5	96.8
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E012	2010 Material Machined Threads	28.5	77.6	32.5	78.6	38.0	87.0	38.0	107.2
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E027	2010 Material Rolled Threads	29.0	76.1	32.5	79.5	36.0	87.0	36.5	101.9
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E093	2010 Material Machined Threads	29.0	75.9	34.0	79.2	37.5	88.6	38.0	106.7
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E096	2010 Material Rolled Threads	28.5	73.5	30.0	80.2	35.5	84.0	35.0	95.3
8	Tower Saddle Tie Rods - Top	4"	8-V-1	2010 Material Rolled Threads	31.5	77.1	34.5	81.5	32.5	86.8	31.0	88.7
13	Tower Anchorage Anchor Rods 102mm Diameter - Bottom	4"	13-V-CW-4	2010 Material Machined Threads	30.5	76.3	35.0	79.8	37.0	92.8	35.5	96.6

Table 2.5-1: Results of Fast Fracture Test Showing Kmax

3.1 Klc

With proper instrumentation during the fast fracture testing of fpc specimens, a valid estimate of the stress intensity can be made from crack tip opening displacement, Klctod, measurement. Klctod was measured using the methods described in ASTM E1290-99 where the test is interrupted as soon as the maximum load is reached. The Klctod measured is analogous to fracture toughness, Klc, and is often used to provide an estimate for Klc when there is not enough material for a valid Klc measurement. Klctod values are listed on **Table 3.2-1**.

The fracture toughness of the 2010 rods is clustered around 146 ksivin. The fracture toughness of the 2008 rods is significantly lower at about 123 ksivin.

It was found that the dynamic tear modulus displays a strong correlation with hardness and the environmental stress intensity factor. This correlation can allow KIscc and KI ρ -EHE to be estimated from a simple Td measurement. Thus, an inexpensive Td test of small samples from a rod could provide an inexpensive quality control test for threaded rods allowing the rapid development of KIscc and KI ρ -EHE estimates.

	LRA-Fast Fracture Strength Kictod ≈ Kic												
								Fatigu	e Pre-cracke	d (fpc)			
ID	Structural Component	Dia.	Rod ID	Comment		Center			MR			OD	
	Rior 52 Rooring Pods Top Housing			2010 Matorial	HRC	Td	Kictod	HRC	Td	Kictod	HRC	Td	Kictod
4	(B1,B2,B3,B4)	2"	4-V-1	Rolled Threads	33.5	11.3	158.9	36.0	8.1	145.7			
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-2	2010 Material Rolled Threads	33.0	12.1	152.0	35.5	9.7	149.3			
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-A	2008 Material Top of Rod (Live End)	31.5	1.9	141.5	35.5	0.6	122.2	37.0	0.9	132.7
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-D	2008 Material Near Fracture (Dead End)				32.0	1.0	121.9	36.0	1.7	121.0
3	Shear Key Rods - Top (S1/S2)	3"	3-V-9	2010 Material Machined Threads	30.5	14.1	140.4	32.5	12.8	144.6	36.0	7.3	123.7
3	Shear Key Rods - Top (S1/S2)	3"	3-V-10	2010 Material Machined Threads	31.5	12.5	159.1	31.5	13.4	138.8	36.0	7.4	147.2
3	Shear Key Rods - Top (S1/S2)	3"	3-V-11	2010 Material Machined Threads	28.0		148.4	33.0	12.3	147.8	35.0	8.5	132.7
3	Shear Key Rods - Top (S1/S2)	3"	3-V-12	2010 Material Machined Threads	31.0	12.8	138.8	34.0	11.3	139.0	36.0	13.9	143.1
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-b2E-4	2006 Material Machined Threads	30.0	21.9	141.6	37.0	8.2	143.4	37.5	7.0	152.3
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-E109	2006 Material Machined Threads	31.5	13.7	147.4	37.0	8.5	152.9	38.0	6.3	157.5
18	2013 E2 Replacement Anchor Rods Non-Galvanized	3"	18-V-1	2013 Material Machined Threads	33.5	14.8	143.5	35.5	12.5	149.0	35.5	10.2	145.0
18	2013 E2 Replacement Anchor Rods Galvanized	3"	18-V-2	2013 Material Machined Threads	33.0	15.9	146.8	35.0	12.6	149.0	35.0	11.2	149.6
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E012	2010 Material Machined Threads	28.5	10.9	152.0	32.5	9.8	161.4	38.0	4.6	138.3
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E027	2010 Material Rolled Threads	29.0	18.0	142.3	32.5	13.9	149.2	36.0	6.9	143.9
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E093	2010 Material Machined Threads	29.0	10.3	149.7	34.0	8.1	143.7	37.5	5.8	139.0
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E096	2010 Material Rolled Threads	28.5	22.0	143.9	30.0	17.7	137.6	35.5	9.0	144.2
8	Tower Saddle Tie Rods - Top	4"	8-V-1	2010 Material Rolled Threads	31.5	4.6	128.9	34.5	2.2	145.1	32.5	2.0	154.9
13	Tower Anchorage Anchor Rods 102mm Diameter - Bottom	4"	13-V-CW-4	2010 Material Machined Threads	30.5	7.0	146.3	35.0	3.4	129.5	37.0	5.5	132.5

Table 3.1-1: Results of Fast Fracture Test Showing Kictod

3.2 IHE Threshold

The IHE threshold stress-intensity values for both threaded and fpc specimens are listed in **Table 3.3-1**. Based on this limited data, neither the 2008 nor the 2010 specimens tested exhibit IHE. The possibility exists that process hydrogen could have diffused out of the uncoated surfaces of samples since the rod samples were removed from the bridge and in storage at room temperature for up to six months before testing was considered. Extra precautions were taken with the freshly galvanized 2013 rods to minimize any escape of hydrogen by storing specimens in a freezer and the results of these specimens further supported the original conclusions.

			LRA	-IHE Testing in Air						
					Fa	tigue Pre-	pc)	Threaded		
ID	Structural Component	Dia.	Rod ID	Comment	N	1R	OD		Thd	
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-1	2010 Material Rolled Threads	HRC 35.0	<u>КІ-іне</u> 92.7	HRC	KI-IHE	HRC 36.0	КІр-ін е 94.4
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-2	2010 Material Rolled Threads	35.5	95.9			35.5	97.4
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-A	2008 Material Top of Rod (Live End)	32.0	80.9	36.5	77.7	36.0	96.9
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-D	2008 Material Near Fracture (Dead End)			36.0	77.0	36.0	92.9
3	Shear Key Rods - Top (S1/S2)	3"	3-V-9	2010 Material Machined Threads	33.5	95.8	36.0	86.2	35.0	100.8
3	Shear Key Rods - Top (S1/S2)	3"	3-V-10	2010 Material Machined Threads	33.0	92.1	35.5	85.2	36.0	99.0
3	Shear Key Rods - Top (S1/S2)	3"	3-V-11	2010 Material Machined Threads	32.5	86.4	36.0	84.4	36.0	97.3
3	Shear Key Rods - Top (S1/S2)	3"	3-V-12	2010 Material Machined Threads	33.0	92.1	35.5	88.7	35.0	95.8
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-b2E-4	2006 Material Machined Threads	35.5	89.9	37.0	86.8	37.0	96.5
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-E109	2006 Material Machined Threads	35.5	86.6	38.0	89.8		
18	2013 E2 Replacement Anchor Rods Non-Galvanized	3"	18-V-1	2013 Material Machined Threads					35.5	99.3
18	2013 E2 Replacement Anchor Rods Galvanized	3"	18-V-2	2013 Material Machined Threads					35.5	97.4

Table 3.2-1: Results of IHE RSL	Tests Showing KI-IHE and KIp	-IHE
---------------------------------	------------------------------	------

3.3 EHE Threshold

The EHE threshold stress-intensity values for both fpc and Thd specimens tested at -1.106 Vsce are given in **Table 3.4-1**. For the fpc specimens the results are listed as Klscc. However, the Thd specimens have a thread acting as a notch rather than a fatigue pre-crack so the measured stress intensity factor is an "effective" stress intensity factor that is not a material property but includes the effect of the notch root radius. Since the symbol, p, is typically used to indicate a root radius in literature, Klp-EHE was used to differentiate the stress intensity factor measured using threaded specimens from Klscc for fpc specimens. The highest threaded Klp-EHE data achieved were obtained from the 2013 rods followed by the 2010 rods, and lastly the 2008 rods. The Klp-EHE data for rod samples with rolled threads are higher than the Klp data for the cut-thread rod samples, excluding the 2013 rods. Although the 2013 rod has cut threads, the non-galvanized threaded specimens achieved the highest threshold (higher than rolled threads). The fpc specimens indicate the 2013 material is the most environmental corrosion-resistant of the rods obtained for Test V.

	LRA-EHE Testing in 3.5% NaCl Water at -1.106 Vsce										
						Fatigue Pre-	cracked (fpc)			Threaded	
ID	Structural Component	Dia.	Rod ID	Comment	N	IR	0	D		Thd	
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-1	2010 Material Rolled Threads	HRC 35.5	23.3	HRC	Kiscc	HRC 36.5	КІр-ене 85.0	Fu-ене 1.00
4	Pier E2 Bearing Rods - Top Housing (B1,B2,B3,B4)	2"	4-V-2	2010 Material Rolled Threads	36.0	27.5			36.0	84.6	0.99
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-A	2008 Material Top of Rod (Live End)	35.0	24.1	37.5	19.2	36.5	55.0	0.62
1	Shear Key Anchor Rods - Bottom (S1/S2)	3"	1-V-S2-A2-D	2008 Material Near Fracture (Dead End)	34.0	29.1	35.0	29.1	36.0	51.9	0.59
3	Shear Key Rods - Top (S1/S2)	3"	3-V-9	2010 Material Machined Threads	33.5	35.1	35.5	28.2	35.0	62.3	0.70
3	Shear Key Rods - Top (S1/S2)	3"	3-V-10	2010 Material Machined Threads	33.0	35.0	36.0	26.5	35.0	66.3	0.75
3	Shear Key Rods - Top (S1/S2)	3"	3-V-11	2010 Material Machined Threads	33.0	36.9	34.5	32.1	36.0	69.9	0.79
3	Shear Key Rods - Top (S1/S2)	3"	3-V-12	2010 Material Machined Threads	33.0	33.6	35.5	23.1	35.5	66.3	0.75
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-b2E-4	2006 Material Machined Threads	34.0	39.8	37.0	22.6	37.5	63.6	0.72
12	Tower Anchorage Anchor Rods 76mm Diameter - Bottom	3"	12-V-E109	2006 Material Machined Threads	37.5	24.3	38.0	19.2	37.5	61.0	0.69
18	2013 E2 Replacement Anchor Rods Non-Galvanized	3"	18-V-1	2013 Material Machined Threads	35.5	43.2	35.5	42.9	35.5	91.5	1.03
18	2013 E2 Replacement Anchor Rods Galvanized	3"	18-V-2	2013 Material Machined Threads	35.0	44.4	35.5	42.7	35.5	86.7	0.98
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E012	2010 Material Machined Threads	34.0	28.4	38.0	20.5	37.5	52.1	0.58
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E027	2010 Material Rolled Threads	31.0	34.4	36.5	24.0	36.5	65.1	0.72
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E093	2010 Material Machined Threads	32.5	41.4	37.5	22.2	38.0	54.5	0.60
7	PWS Strand Anchor Rods (Main Cable)	3.5"	7-V-E096	2010 Material Rolled Threads	33.5	31.5	35.0	26.5	35.0	87.5	0.97
8	Tower Saddle Tie Rods - Top	4"	8-V-1	2010 Material Rolled Threads	33.5	30.7	32.5	33.9	34.0	78.0	0.85
13	Tower Anchorage Anchor Rods 102mm Diameter - Bottom	4"	13-V-CW-4	2010 Material Machined Threads	36.5	24.1	36.5	21.4	37.0	58.0	0.63

3.4 Remnant Thresholds

Remnants of some of the rods that were tested in Test IV were provided for testing at LRA. The remnants from Group ID #2 were cut from the dead end stick-out portion of the rod both as installed on the bridge and as tested in Test IV. The remnants from Group ID#7 were cut from the dead end stick out as tested in Test IV. Remnant 7-V-TR-9-E was from a rod made with rolled threads. Remnant 7-V-R-10-G was from a rod made with machined threads. Results of testing the threaded specimens for these remnants are listed in **Table 3.3-5**.

	Test V Remnant Results												
ID	Remnant	Dia.	Structural Component		ded FFS	Threaded EHE							
	Rod ID			HRC	Kmax	HRC	ΚΙρ-εнε	Fu-EHE					
2	B1-F4	3"	Shear Key and Bearing Anchor Rods - Bottom (S1/S2)	36.0	99.5	36.5	61.5	0.69					
2	B2-F5	3"	Shear Key and Bearing Anchor Rods - Bottom (S1/S2)	36.0	97.8	35.5	63.5	0.72					
2	S3-D2	3"	Shear Key and Bearing Anchor Rods - Bottom (S1/S2)	35.5	98.7	36.0	65.0	0.73					
2	S4-E2	3"	Shear Key and Bearing Anchor Rods - Bottom (S1/S2)	35.0	91.6	35.5	61.8	0.70					
7	7-V-TR-9-E	3.5"	PWS Strand Anchor Rods (Main Cable)	37.0	101.9	37.5	68.0	0.75					
7	7-V-TR-10-G	3.5"	PWS Strand Anchor Rods (Main Cable)	35.5	100.0	36.0	57.0	0.63					

Table 3.4-1: Results of Remnant FFS and EHE RSL Tests Showing Kmax and KIP-EHE

Page 17

4 Test V Discussion

The fracture mechanism for rolled threads was found and the difference between the KIp threshold between machined and rolled threads was explained. As a result of discovering the EHE fracture mechanism for the cut threads a correlation between KIp-IHE and the material's Td was proposed and found to exist.

4.1 Kmax

The fast fracture strength values for the samples (including the remnant specimens) are plotted in **Figure 4.1-1** as a function of hardness. Because the specimens are well below the minimum size for fracture toughness testing the values recorded for Kmax do not relate to the material's fracture toughness. However, the value for Kmax does show the maximum measured value possible for the specimen and can be used to compare to the RSL test in air to determine if there is any effect of residual hydrogen as measured by KI-IHE. Some initial conclusions that can be drawn from this data are: (1) Kmax increases with hardness, increasing in groups from Center (C), Mid-Radius (MR), Outer Diameter (OD), to Threaded, (2) Kmax for the threaded specimens is higher than the Kmax for fpc specimens, (3) All rolled thread specimens reached test limit without cracking, and (4) The 2008-fpc specimens are at the minimum values of the 2010-fpc specimens and the 2008 threaded-cut specimens are within range of 2010 threaded-cut specimens.

Figure 4.1-1: Maximum Achieved Stress Intensity Factors During Fast Fracture Testing

4.2 Klc

Fracture toughness of steel is measured by determining the critical stress intensity factor at which a sharp crack initiates. Klctod is an estimate for the fracture toughness of the material. LRA's experience is that the estimate from Klctod closely matches linear elastic results and certainly can be used for comparison between rods. The fpc specimen Klctod values calculated from the fast fracture test data listed in **Table 3.1-1** are plotted in **Figure 4.2-1**. The fracture toughness of the 2010 rods is clustered around 146 ksivin. The fracture toughness of the 2008 rods is about 123 ksivin. In general, for high-strength, low-alloy 4140 steel, the fracture toughness should decrease with increasing hardness. For microstructures other than martensite the fracture toughness should be less than the fracture toughness of martensite at the same hardness. The lower hardness MR specimens were mostly from the low hardenability of 4140 steel as compared to 4340 steel MR specimens. Additionally, the range of hardness displayed by the specimens from the OD of the rods is small so the fracture toughness should not change by much. The 4140 rods delivered in 2008 have fracture toughness values that are below the fracture toughness correlation for the 2010 material. The rods delivered in 2013 made from 4340 steel have a facture toughness that is approximately the same as the 2010 rods.

Figure 4.2-1: KIctod Estimates for Fracture Toughness

The RSL IHE tests for the fpc specimens were tested on a fixture that resulted with higher KI-IHE loads than Kmax. However, this issue did not exist for the threaded specimens. The KI-IHE results are plotted in **Figure 4.3-1** along with the trend lines for the Kmax values from the fast fracture tests shown in **Figure 4.1-1**. For the threaded specimens, most of the KI-IHE results are at or slightly below the Kmax line. Most of the fpc specimens are at or slightly above the Kmax line – most likely due to the distortion in the test fixture at the higher loads. SEM examination of the fpc specimens, including the 2008 material, showed no evidence of intergranular cracking, IG, indicating that no hydrogen cracking had occurred. IHE testing was discontinued when it became apparent that no residual hydrogen was present in any of the rods tested.

Figure 4.3-1: Results of RSL IHE Testing for Both fpc and Thd Specimens

4.4 EHE Thresholds

The results of RSL testing of threaded specimens (including the threaded specimens from the remnant samples) in 3.5% NaCl in water with an applied potential of -1.106 Vsce is shown in

Figure 4.4-1. The KIP-EHE measured for the threaded specimens is significantly greater than the fpc specimens showing the effect of the larger root radius. The trend line for the fatigue pre-cracked data is drawn in black and shows the effect of hardness on KIscc. Lines parallel to the fpc trend line are drawn through the data for the threaded specimens to provide an estimate for the effect of hardness on the threaded data. Typically, the rods with rolled threads display KIP-EHE that are significantly greater than the rods with cut threads. The group of rods with rolled threads that have the higher values for KIP-EHE and lie above the trend line had an "M" shaped profile from the hardness testing done in Test II and Test III.

Figure 4.4-1: Results of RSL EHE Testing for Both fpc and Thd Specimens

In Summary:

- The KIp-EHE and KIscc were determined for each rod sample provided
- The KIscc data are dependent on hardness of the specimen.
- The KIp-EHE data for the 2010 rods are higher than KIp-EHE data for the 2008 rods due to a combination of cleanliness and toughness of the steel and the manufacturing quality of the threads.
- The KIp-EHE data for rod samples with rolled threads are typically higher than the KIp-EHE data for the cut-thread rod samples.

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

- The group of rods with rolled threads all lie above the trend line for cut threads. The rolled rods with an "M" shaped hardness profile displayed the highest environmental thresholds for SAE 4140 steel.

4.5 Special Projects

4.5.1 Objective

Since many specimens can be obtained throughout a cross section of a 3-inch-long threaded rod segment, the effects of varying manufacturing and environmental variables, such as potential, on the EHE threshold of the threaded rods can be evaluated. Several ad hoc projects were requested and carried out to evaluate specific concerns raised during testing of the A354BD threaded rods.

- 1. The Open Circuit Potential was measured for 20 rods being tested as part of Test V,
- 2. The effect of specimen width, or Plane Strain on the Performance of Threaded Specimens was evaluated,
- 3. The effect of cracks in the galvanizing as possible sharp crack initiation points was evaluated,
- 4. SEM Fracture Morphology Comparison in fpc Specimens,
- 5. Crack Initiation Analysis in 2008 Rod Dead-End,
- 6. Crack Initiation Analysis on Threaded SEN(B) Specimens.
- 7. Fractographic analysis was conducted by using a Scanning Electron Microscope (SEM)
 - a. On tested specimens whose fracture surfaces were produced under known testing conditions.
 - b. This was compared to the results of the post fracture analysis (PFA) of the threaded rods.

4.5.2 Open Circuit Potential

To characterize the galvanic corrosion behavior of the coating relative to the specific grade of steel, the Freely Corroding Corrosion Potential, ECORR, or Open Circuit Potential, OCP was measured in a 3.5 % NaCl solution. The OCP measurements were run in accordance with ASTM G3.

Summary of Protocol:

- 1. Check the electrode's potential by comparing with a calibration electrode. Both electrodes are placed in 3.5% NaCl solution in beaker.
- 2. Record the potential. Connect the saturated calomel electrode (SCE) that is to be used, to the Digital Acquisition Unit (DAQ) and remove the calibration electrode from the beaker.
- 3. Place the specimen to be tested in Alconox and acetone for five minutes each using the ultrasonic machine.

- 4. Coat the sample with stop-off lacquer making sure there are no exposed areas of the sample that are to be exposed to the NaCl solution except those that are to be tested.
- 5. Wait approximately 30 minutes for the lacquer to dry.
- 6. Attach the clamps to the specimen and adjust the specimen's position in the beaker so that the surface of the solution is in contact with the lacquer.
- 7. Before beginning the test, measure and record the solution temperature (using a thermometer) as well as its pH level (using pH tape).
- 8. Open the Tracer DAQ software and begin the test
- 9. After the test is finished, record the temperature of the solution and the pH level.
- 10. Record the SCE electrode's potential relative to the calibration electrode by following step number one.
- 11. Remove the specimen and rinse with deionized water followed by acetone. Once the sample is thoroughly dried, spray with Krylon. Let the sample dry for approximately one hour. Place sample in a sealed bag and store in corresponding job box.
- 12. Take out the SCE electrode from the solution and rinse with deionized water. Place electrode in KCl solution and store.

Figure 4.5-1 shows the test specimen with the specimen under test immersed in 3.5% NaCl solution along with a SCE. **Figure 4.5-2** shows the test set-up along with the control computer for data acquisition.

Figure 4.5-1: OCP Measurement in 3.5% NaCl in Beakers

Figure 4.5-2: OCP Measurement Set-up

Results:

For each rod tested at LRA the OCP was measured. For the test, OCP was monitored for 48 hours and the variation in OCP with time was monitored and recorded every 30 seconds. The OCP for three rods was measured for an extended time to monitor how the OCP varied with time and determine if the OCP ever leveled off.

Table 4.5-1 shows results for testing several rods over 48 hours with the curves shown in **Figure 4.5-3**. The measured value for OCP varies significantly over the 48 hour time period and it is not clear if it levels off. The greatest variation occurs in the first two hours.

Samplo	Vsce					
Sample	After 2	After 10	After 20	After 30	After 40	After 48
1-V-S2-A2-A	-0.9541	-0.9238	-0.9222	-0.9068	-0.8986	-0.8898
3-V-9	-1.0069	-1.0205	-1.0200	-1.0151	-1.0114	-1.0128
4-V-1	-0.9061	-0.9092	-0.8922	-0.8841	-0.8833	-0.8701

Figure 4.5-3: OCP vs Time for Three Typical Rods

In order to see what the long term variation in OCP was, one of the rods, Remnant B1-F4, was tested for an extended time of over 120 hours. **Figure 4.5-4** shows the resulting curve. Within the first few hours the OCP dropped from -0.950 Vsce to -1.000 Vsce. Over the next 120 hours the OCP gradually increased, approaching -0.900 Vsce at 120 hours. Typically the measured value for OCP would drop rapidly to a minimum within an hour. The measured value for OCP would increase slightly over the next 20 hours and then increase continuously after that.

Figure 4.5-4: OCP Results for Remnant B1-F4

The OCP was measured for all the rods tested at LRA over a period of 48 hours. **Table 4.5-2** lists the results of the OCP testing, listing the initial voltage, the minimum voltage and the final voltage.

Sample Number	Initial Voltage	Minimum Voltage	Final Voltage
1-V-S2-A2-A	-0.944	-0.986	-0.893
1-V-S2-A2-D	-1.115	-1.126	-1.073
3-V-9	-0.992	-1.023	-1.013
3-V-10	-1.047	-1.072	-1.052
3-V-11	-1.052	-1.052	-0.965
3-V-12	-1.020	-1.022	-1.003
4-V-1	-0.899	-0.921	-0.867
4-V-2	-0.850	-0.875	-0.827
7-V-E012	-0.985	-1.008	-0.940
7-V-E027	-0.915	-0.946	-0.919
7-V-E093	-1.110	-1.128	-1.071
7-V-E096	-0.962	-1.002	-0.966
8-V-1	-0.920	-0.922	-0.896
12-V-B2-E4	-0.875	-0.876	- <mark>0.8</mark> 30
12-V-E109	-0.953	-0.971	-0.887
13-V-CW-4	-0.880	-0.921	-0.893
18-V-1	-0.445	-0.690	-0.685
18-V-2	-1.001	-1.069	-1.021
Rem B1-F4	-0.960	-1.013	-0.902
Rem B2-F5	-0.930	-0.937	-0.886
Rem S3-D2	-0.847	-0.929	-0.817
Rem S4-E2	-1.028	-1.031	-1.009

Table 4.5-2: Test V OCP Results

Environmental testing at LRA was performed at -1.106 Vsce and the difference in applied potential affected the determined KIscc and KI ρ -EHE threshold. While there are individual differences in the determined OCP value, clearly the OCP for the remnants are significantly different from the potential of -1.106Vsce applied during testing at LRA. Testing at the potential of -1.106 Vsce during Test V resulted in more conservative, lower KI ρ -EHE values.

4.5.3 Evaluating Plane Strain Performance of Threaded Specimens

Test V used sub-sized specimens for the threaded specimens. Since they did not meet standard fracture mechanics plane strain requirements, a special project was designed to show the relationship of KIp of the sub-sized specimens to valid plane strain specimens.

Approach:

Two approaches were used to show the relationship of sub-sized Threaded specimen threshold stress intensity factor measurement to valid plane strain values of KIp.

- 1. Measuring the environmental threshold of 1.00-inch wide specimens. These specimens were designed having a width (Dimension "B") that met normal plane strain requirements. The 1 inch wide specimen are referred to as 1.0B specimens.
- 2. Measuring the environmental threshold for specimens of higher hardness that transitioned to normal plane strain requirements.

One inch Specimens:

The specimen had the same dimensions as the standard specimen with the exception of the width. Rather than being 0.40 inches wide the larger specimen was 1.00 inches wide. **Figure 4.5-5** shows a representation of the 1.0B specimen. The specimens were machined from the 3-V-12 rod.

Figure 4.5-5: Specimen Drawing of 1.0B SEN(B)

Figure 4.5-6 shows a picture of the fracture face of a standard 0.4B SEN(B) specimen showing that the EHE crack growth rate stabilized as a flat region near the center for approximately 1/2 of the width, with a shear lip in the remaining area. **Figure 4.5-7** shows the fracture face of a one-inch wide, 1.0B SEN(B) specimen showing the SCC crack to be flat and parallel to the rear face of the specimen – at a contour of relatively constant stress intensity factor – across 90% of the width of the specimen.

Figure 4.5-6: Typical EHE Fracture Face of 0.4B SEN(B) Specimen

Figure 4.5-7: EHE Fracture Face of 1.0B SEN(B) Specimen

The characteristic of the one-inch wide specimen is that the relationship of the bending stress to the applied stress intensity factor is the same as the standard specimen but the majority of the specimen is in plane strain. See **Table 4.5-3** for the calculated ratio of bending stress to stress intensity factor for both fast fracture specimens from the wide and standard geometries.

Table 4.5-3: Ratio of Applied Stress to Stress Intensity Factor for Wide and Standard Geometry 3-V-12 Threaded Specimens

Specimen	Kmax (ksi√in)	σ _{max} (ksi)	σmax/Kmax
3-V-12, 1.0B, Thd SN1	95.2	233.8	2.456
3-V-12, 0.4B, Thd SN5	99.4	243.4	2.449

The ratio of bending stress to stress intensity factor is essentially the same for both specimen geometries.

High Hardness Specimens:

When simulating a zinc potential, the concept was to show that at higher hardness, the measured KIp-EHE for these specimens (which were tested under plane strain conditions) would fall along a curve of stress intensity vs hardness, parallel to the Townsend curve and extend into the KIp-EHE data measured in Test V. (8)

Specimens were removed from an exemplar threaded rod of the same material (SAE 4140 steel) and size (three inch diameter) as the majority of the rods that were tested at LRA. This rod also had rolled threads. The galvanizing was removed by soaking the specimens in 10% HCl. Then, the specimens were quenched and tempered to varying hardness. Target hardness values were 50 HRC, 45 HRC and 40 HRC.

Summary of Protocol:

Testing was performed using the protocol developed for measuring the value for KIp for threaded specimens for Test V. For the One Inch specimens, three specimens were tested. One was broken at fast fracture conditions to determine maximum load. The other two were broken under EHE conditions at progressively slower strain rates to find a threshold. Only two EHE tests were required.

The high hardness specimens were also tested under EHE conditions. The hardness for these specimens was sufficiently high that, from previous experience, the strain rate necessary for achieving a threshold was already known.

Results:

Table 4.5-4 lists the results from testing the 1.0B SEN(B) specimens from Rod 3-V-12. Both EHE results are within 5% of the value for KIp with the lowest value for EHE KIp being the threshold at 62.1 ksi $\sqrt{$ in.

S/N	Hardness (HRC)	Ктах, КІр-ене (ksi√in)	
Thd 1, FFS	35.5	95.2	
Thd 3, EHE	35.5	63.1	
Thd 4, EHE	35.5	62.1	

Table 4.5-4: Results from Testing 1.0B SEN(B) Specimens from Rod 3-V-12

Table 4.5-5 lists comparable results from testing standard size specimens from rod 3-V-12 with the threshold being 66.3 ksi \sqrt{in} . The threshold for the one-inch specimen is lower but within 5% of the threshold found with standard specimens.

S/N	Hardness (HRC)	Ктах, КІр-ене (ksi√in)
Thd 5, FFS	36.0	99.4
Thd 2, IHE	35.0	95.8
Thd 3, EHE	35.5	66.3
Thd 6, EHE	36.0	70.0

Table 4.5-5: Results from Testing Standard Specimens from Rod 3-V-12

Table 4.5-6 lists the results from testing the high hardness specimens. The heat treated specimens are seen with notation HT, and the as received specimen is seen with notation AR.

Table 4.5-6: Results	from Testing High	Hardness Specimens

S/N	Hardness (HRC)	КІр-ене (ksi√in)	
HT 1000 Thd SN1, EHE	39.0	76.8	
HT 800 Thd SN1, EHE	45.5	64.2	
AR Thd SN1, EHE	52.0	40.8	
Figure 4.5-8 shows the results from the threaded, high hardness, rolled specimens and threaded, rolled specimens, along with the results of all SAE 4140, fatigue pre-cracked specimens. The graphed data is broken into four groups:

- 1. EHE for the high hardness threaded exemplar rods with rolled threads.
- 2. EHE for the threaded rods with rolled threads.
- 3. EHE fatigue pre-cracked specimens from rods made in 2008.
- 4. EHE fatigue pre-cracked specimens from rods made in 2006 and 2010.

The fpc data was plotted to show how the hardness effected EHE stress intensity thresholds (similar to Townsend's work in 1975) even when threaded specimens were used. (8)

Figure 4.5-8: Effect of Hardness on KIp-EHE and KIscc at -1.106Vsce

This data is for comparison to the high hardness specimens (labeled "Exemplar HT"). Note that the "Exemplar HT" specimens (high hardness specimens) were made from rods that had rolled threads. Austenitizing, quenching and tempering would remove all the deformed microstructure and compressive residual stress from rolling, but the thread profile would still have the benefits of the smooth rounded profile.

Conclusion:

The goal of this project was to verify that the environmental thresholds measured in plain strain conditions matched the environmental thresholds measured in Test V.

For the one Inch wide 3-V-12 threaded specimens, the cracking threshold was measured to be 62.1 ksi√in that can be compared to the environmental threshold of 66.3 ksi√in for the standard geometry 3-V-12 threaded specimens. From this, it can be concluded that the threshold determination

method used for 0.4B standard geometry specimens, where stiffness analysis is used is equivalent to measuring the 1.0B plane strain environmental threshold.

For the high-hardness standard geometry specimens, **Figure 4.5-8** illustrates that the high hardness data fall along a line that is parallel to the Townsend Curve. **(8)** Being that the threads of the exemplar rod were rolled, the data for these tests is in line with the data for the 2010 Threaded rods with rolled threads supporting the conclusion that the environmental thresholds measured for the 2010 rods are in agreement with the environmental thresholds measured in plane strain conditions.

4.5.4 Zinc Cracking

The experiment was designed to test the hypothesis that cracking in the galvanizing may act as a stress riser at the root of the thread. If the hypothesis is found to be true, it would mean that after the cracks initiate in the galvanizing, it would propagate into the steel, at a lower stress level than the crack would otherwise initiate if the steel were bare. On the other hand, if the hypothesis is shown to be false, then we could conclude that cracking in the galvanizing has no impact on crack initiation in the steel.

Procedure:

To test the hypothesis, two threaded specimens from the same rod piece were prepared: One with the existing galvanizing (Specimen A) and one stripped of all the galvanized coating, i.e. bare (Specimen B), and both are shown in **Figure 4.5-9**. To ensure that stripping the galvanizing from the bare specimen did not drive hydrogen into it, both specimens were baked at 375°F for 24 hours. Since the purpose of the experiment is to test the fracture mechanism and not stress corrosion, the specimens were step loaded using a conveniently fast loading rate.

Figure 4.5-9: Bare Specimen (Top) and Galvanized Specimen (Bottom)

Both specimens were installed in a RSL bend machine and loaded using a step protocol with a 1-minute dwell time per step. The specimens were monitored using acoustic emission sensors on the specimens. The middle two thread roots of each specimen were videographed at approximately 30X magnification (see **Figure 4.5-10** and **Figure 4.5-11**) during the entire test.

Figure 4.5-10: Crack Progression in Thread Root of Bare Specimen

Figure 4.5-11: Crack Progression in Thread Root of Galvanized Specimen

Results:

The audio recording indicates that cracking of the galvanizing in Specimen A started at approximately 25 ksivin. The cracks in the galvanizing are not visible on the thread root surfaces at the videograph's

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

magnification of approximately 30x until the last few load steps (approximately 95 ksi \sqrt{in}). The emissions from Specimen A consisted of continuous "pops" from 25 ksi \sqrt{in} until failure.

On the other hand, noise in Specimen B, in the form of distinct "pops" initiated at a stress intensity factor above 96 ksiVin. Crack initiation in the steel for both specimens occurred at similar levels (see **Table 4.5-7**).

	Stress Intensity (k) when					
Specimen	No Crack	Initiation	Clearly Cracking	Crack Opening		
Bare Steel Threaded Specimen	95 ksi√in	96 ksi√in	103 ksi√in	105 ksi√in		
Galvanized Threaded Specimen	93 ksi√in	94 ksi√in	98 ksi√in	102 ksi√in		

Table 4.5-7: Results of Zinc	Cracking Experiment
Table 4.3-7. Results of Line	Cracking Experiment

Crack initiation in both specimens was identified by visual examination of cracking. Crack opening in the steel and galvanizing occurred at similar levels.

To verify the results, threaded specimen 3-V-10 Threaded SN6 was tested by RSL according to the following protocol:

- 1. Remove galvanizing in dilute HCl.
- 2. Bake at 375°F for 24 hours.
- 3. Visually examine thread root area to verify absence of galvanizing.
- 4. RSL test at parameters identical to 3-V-10 Threaded SN3 (10/5/2,4 with strain rate = 2E-10).

Table 4.5-8 lists EHE results of the RSL tests for 3-V-10. The 3-V-10 Threaded SN3 and Threaded SN 4 specimens were tested with their galvanizing intact. The 3-V-10 Threaded SN6 specimen had the galvanizing removed prior to the RSL test. Although galvanizing was present on two specimens and not on another, a potential of -1.106 Vsce was imposed during EHE testing in a 3.5% NaCl solution.

S/N	Galvanized	Strain Rate (in/in/sec)	КIρ-ене (ksi√in)
3-V-10 Thd SN3	Yes	1.90E-08	66.3
3-V-10 Thd SN4	Yes	1.30E-08	68.6
3-V-10 Thd SN6	No	2.00E-08	67.6

Table 4.5-8: Results of EHE RSL	. Testing of Bare and	Galvanized Specimens
---------------------------------	-----------------------	----------------------

There is no difference in the environmental threshold measured for the three specimens indicating that the presence or absence of galvanizing has no effect on the measured environmental threshold stress intensity factor of the threaded specimens under an externally applied potential.

Conclusion:

At an imposed potential of -1.106 in a 3.5% NaCl solution, the results of this experiment indicate that cracking in the galvanizing does not act as a stress riser or a sharp crack tip at the root of the bolt threads. The implications for the SAS bolts is that cracking in the galvanizing, which may occur at a lower load than the bolt's sustained service load, is not equivalent to a fatigue pre-crack in the steel. Acoustic emission indicates that cracking in the galvanizing may have originated on loading but no cracking was apparent on the surface of the galvanizing until the underlying steel initiated cracking.

Cracking in the galvanizing that exposes the steel surface at the thread root may originate galvanic action that will lead to hydrogen evolution into the steel substrate. However, the threshold for stress corrosion cracking will be higher than that of a pre-cracked specimen with similar properties. This confirms the test results that indicate that threaded fasteners have a higher threshold than fatigue pre-cracked specimens of the same dimensions and material properties.

4.5.5 SEM Fracture Morphology Comparison in fpc Specimens

In Test V, fatigue pre-cracked specimens machined from the rod samples sent to LRA were tested in four-point bending after a sharp crack had been initiated in them. These specimens had fast fracture strength in bending, FFS(B), tests performed on them along with Rising Step Load bending tests in air and in an environment. For the environmental tests, the specimens were tested in 3.5% NaCl solution with an imposed potential of -1.106 Vsce. After the tests were completed to failure, the specimens were fractured on a Charpy impact machine.

Of interest to LRA was the characterization of the fracture morphology for each of the tests performed on the fpc specimens. To perform this characterization, SEM photographs were taken of the fracture face to determine the different fracture modes apparent and match those fracture modes with the tests performed on the specimens. The fracture modes that were found include dimple rupture, hydrogen embrittlement, cleavage and mixed fracture.

Dimpled Rupture:

This fracture mode was found on specimens that had FFS(B) and/or impact tests performed on them. See **Figure 7.10-1** for an image characterizing dimpled rupture. Dimples are characteristic of an overload failure mode due to ductile yielding, tearing or rupture.

Intergranular Fracture:

Intergranular fracture is typical for hydrogen embrittlement. For Test V this mode was exclusively found on the fracture faces of specimens that had been Rising Step Load tested in an environment with an imposed potential. See **Figure 4.5-13** for an image characterizing intergranular fracture.

The clear grain definition and IG cracking in **Figure 4.5-13** is clear evidence of hydrogen embrittlement.

Cleavage:

This fracture mode was mainly found on specimens that were tested at high strain rates characteristic of impact loading. See **Figure 4.5-14** for an image characterizing the failure mode of cleavage. Cleavage was also found in the overload region of specimens from the 2008 material that had failed on the bridge.

The planar, mostly parallel surfaces illustrated in **Figure 4.5-14** are evidence of brittle fracture where the grains of the material get split or severed. The cleavage failure mode occurs with little plastic deformation of the specimen before failure. If a specimen fails with this failure mode under slow strain rate conditions, the cause of failure is most likely due to low fracture toughness (not impact toughness). In the case of the Test V fpc specimens, with the exception fo the 2008 material, this failure mode was found after tests with high strain rates and liquid nitrogen immersion such as the threaded specimens being fractured by impact loading.

Mixed Fracture:

This fracture mode is a mixture of failure modes and was mainly found on specimens that were tested in environments with imposed potentials at higher strain rates. See **Figure 4.5-15** for an image characterizing mixed fracture.

The combination of IG and dimple rupture seen in **Figure 4.5-15** is evidence of a mixed fracture mode. If the ratio of dimple rupture over intergranular fracture is high, the more plastic deformation or yielding occurred.

Figure 4.5-12: SEM Photograph of Dimple Rupture Failure Mode

Figure 4.5-13: SEM Photograph of Intergranular Fracture Mode

Figure 4.5-14: SEM Photograph of Cleavage Fracture Mode

 $20 \mu m$

Figure 4.5-15: SEM Photograph of mixed IG and Dimpled Fracture Modes

Conclusion:

From the analysis under the SEM, the fracture modes of the specimens tested in Test V can be characterized by the test performed on them. The first failure mode of dimple rupture occurs during FFS(B) and impact tests. The second failure mode of hydrogen embrittlement occurs during environmental Rising Step Load tests with imposed potentials. The third failure mode of cleavage occurs during impact testing. The fourth and final failure mode of mixed fracture occurs during environmental Rising Step Load tests with imposed potentials.

4.5.6 Crack Initiation Analysis in 2008 Rod Dead-End

M Mag 10003

LRA received rod samples of one of the 2008 shear key anchor bolts that fractured after installation on the bridge. The section of most interest was the dead end of the bolt that was located near the fracture (Rod 1-V-S2-A2-D). Upon receiving machined samples of Rod 1-V-S2-A2-D, the specimens were examined before testing. It was found that there was a circumferential Pre-existing crack in the section of the rod that LRA received that extended one-third of the circumference of the bolt in the thread root.

One of the machined threaded specimens contained a portion of this Pre-existing crack. The crack was located in the machined square bar portion of the threaded specimen approximately one-quarter of an inch from the end of the specimen. **Figure 4.5-16** shows the specimen after removing the cracked portion.

Figure 4.5-16: Pre-existing Crack in Threaded Specimen cut from Rod 1-V-S2-A2-D

To compare the fracture mode of the Pre-existing crack to the fracture mode of an EHE tested Rod 1-V-S2-A2-D threaded specimen, fractographic analysis by SEM was conducted on the fracture surface of both specimens.

Fractographic Analysis of Pre-existing Crack:

After cleaning the fracture face of the Pre-existing crack in an ultrasonic cleaner with Alconox first and then Acetone, a photograph was taken (**Figure 4.5-17**) for reference during SEM analysis. The fracture locations indicated in **Figure 4.5-17** are indicative of the following fracture modes:

- 1. Region of crack Initiation (Damaged Zone)
- 2. IG Hydrogen Crack growth
- 3. Mixed IG and dimpled
- 4. Overload

After cleaning and the initial photograph, SEM photos were taken of the four locations indicated in **Figure 4.5-17** at 1,000X and 500X magnification. See **Figure 4.5-18** for photos of each of the regions.

Figure 4.5-17: Fracture Face of Pre-existing Crack in 2008 Dead End

Figure 4.5-18: SEM of Fracture Mode Regions in pre-existing crack

The first region, crack initiation, is evidenced by the thread root at the top of the image showing signs of cold work that occurred during the machining of the threads. In addition, IG can be seen in this region.

The second region, where the fracture mode is IG cracking, is evidenced by the faceted nature of the fracture face or IG in this region. In addition, the small population of dimples and the pronounced grain separation are indicative of IG cracking as well, indicative of an increase in the stress intensity.

The third region has some grain separation along with a larger population of dimples. This indicates a mixed fracture region where a combination of dimple rupture and IG are occurring.

The fourth and final region of the fracture face has a vast majority of dimpled rupture and little to no grain separation or faceting. This region is characteristic of the dimpled rupture fracture mode.

Fractographic Analysis of Test V EHE Crack:

After the 1-V-S2-A2-D Thd 5 fractured during its environmental Test V RSL test, the specimen was baked and impact tested with a Charpy V-Notched (**CVN**) impact machine after cooling in LN₂. Before performing SEM analysis on this specimen, the fracture face was photographed to illustrate the cracked region. The fracture locations indicated in **Figure 4.5-19** are indicative of the following fracture modes:

- 1. Region of crack Initiation (Damaged Zone)
- 2. IG Hydrogen Crack growth
- 3. Mixed IG and dimpled
- 4. Overload

Figure 4.5-19: Fracture Face of Rod 1-V-S2-A2-D Thd 5

After cleaning and after the photograph of the fracture face was taken, SEM photos were taken of the four locations indicated in **Figure 4.5-19** at 500X and 1000X magnification. See **Figure 4.5-20** for photos of each of the regions.

Figure 4.5-20: SEM of Failure Mode Regions of Sample 1-V-S2-A2-D Thd 5

The first region, crack initiation, is evidenced by the thread root at the top of the image showing signs of cold work that occurred during the machining of the threads. In addition, IG can be seen in this region.

The second region, where the fracture mode is hydrogen cracking, is evidenced by the faceted nature of the fracture face in this region. In addition, the small population of dimples and the pronounced grain separation are indicative of IG cracking as well, indicative of an increase in the stress intensity.

The third region has some grain separation along with a larger population of dimples. This indicates a mixed fracture region where a combination of dimple rupture and IG cracking are occurring.

The fourth and final region of the fracture face has a vast majority of dimpled rupture and little to no grain separation or faceting occurring. This region is characteristic of the overload fracture mode. This fractographic pattern is consistent with crack growth under a constant load or increasing stress intensity.

Conclusion:

Upon comparison of the two sets of SEM photos of the specimen with the in-situ crack and the EHE tested threaded specimen, it was determined that the fracture modes of the two samples are nearly identical. Thus, the pre-existing crack in the 1-V-S2-A2-D rod that was installed on the bridge was induced by environmental hydrogen embrittlement. This implies that the rod must have been immersed in water under stress and hydrogen embrittlement occurred from hydrogen charging due to the galvanic reaction between the galvanized zinc and steel substrate.

5 Test V Conclusions

- 1. There was no IHE found in the SAS Rods obtained at LRA.
- 2. The KIp-EHE results for the 2010 rods are higher than KIp-EHE results for the 2008 rods due to a combination of cleanliness and toughness of the steel and the manufacturing quality of the threads.
- 3. HE/SCC cracking in bars with rolled threads:
 - a. For rods rolled threads with an M-shaped hardness profile, the initial cracking arrests by a blunting mechanism due to elongated grains in a lower hardness material
 - b. Crack arrest is often maintained until load is increased
 - c. Because of the crack blunting (smiley faces), cracking in the core occurs at a higher stress intensity factor than corresponding cracking in cut threads. Often the magnitude of this stress intensity factor is as much as 20% greater than any cut thread threshold.
 - d. The group of rods with rolled threads that have an "M" shaped profile from the hardness testing done in Test II and Test III, all lie above the trend line for cut threads.

6 Abbreviations, Acronyms, and Symbols

6.1 Abbre	eviations and Acronyms
BATA	Bay Area Toll Authority
С	Specimen cut from the center cross section of a rod (fpc)
СТОД	Crack tip opening displacement
DTI	Damage Tolerance Index
EAC	Environmentally assisted cracking
EDM	Electric discharge machine
EHE	Environmental Hydrogen Embrittlement
FDI	Fracture Diagnostics International
FEM	Finite Element Models
FFS	Fast Fracture Strength
fpc	Fatigue pre-cracked specimen
HDG-Zn	Hot dipped galvanized zinc
HE	Hydrogen embrittlement
HRC	Rockwell C Hardness
HSC	Hydrogen stress cracking
IG	Intergranular cracking
IHE	Internal hydrogen embrittlement
ISL	Incremental Step Loading
LRA	L.Raymond & Associates, A Professional Consulting Corporation
MR	Specimen cut from the cross section of a rod at the mid-radius (fpc)
OBG	Orthotropic box girders
OCP	Open Circuit Corrosion Potential of the coating
OD	Specimen cut from the cross section of a rod at the outside diameter (Refers to fpc but can also be Thd)

ODfpc	See OD					
ODthd	See Thd					
PFA	Post failure analysis					
RSL™	Rising step load					
SCC	Stress Corrosion Cracking					
SCE	Saturated Calomel Electrode					
SED	Strain Energy Density					
SEM	Scanning Electron Microscope					
SEN(B)	Single edge notched specimen tested in bending					
SFOBB	San Francisco-Oakland Bay Bridge					
SLT	Sustained load test					
ТВРОС	Toll Bridge Program Oversight Committee					
Thd	Threaded specimen					
6.2 Symbo	ls					
%FFS	% Fast Fracture Strength, 100% refers to the Kmax per rod found during FFS Testing					
CVN	Charpy V-Notched					
DTI-EHE	EHE threshold DTI found during EHE					
DTI-IHE	IHE threshold DTI found during IHE					
DTImax	Maximum DTI found during FFS					
Fu	Force ultimate or minimum ultimate tensile strength					
Fu-applied	The applied force for the remaining rods on the bridge					
Fu-ене	EHE Force ultimate or EHE minimum ultimate tensile strength					

- Hsr Hydrogen Susceptibility ratio, ration of the threshold for the onset of hydrogen assisted cracking to the tensile strength of the material (Environmental threshold/UTS)
- k Stiffness, compliance, or spring rate of the specimen being tested (lbs/in)
- KIc Fracture Toughness (E399 Loading Rates)
- KIctod Stress intensity at the crack tip initiation (crack tip opening displacement)

KI-іне	IHE stress intensity threshold (not geometry dependent/material property, fpc specimen)						
KIscc	SCC threshold stress intensity factor (T)						
ΚΙρ	Stress intensity thresholds for Thd specimens with root radius, ρ						
КІр-ене	EHE stress intensity threshold (geometry dependent on root radius $ ho$, Thd specimen)						
КІр-іне	IHE stress intensity threshold (geometry dependent on root radius $ ho$, Thd specimen)						
Kmax	Maximum stress intensity factor obtained during a FFS Test (fpc and Thd specimen)						
Ρ*	Seen as equivalent load applied to a specimen with idealized geometry derived from the load applied to actual specimen						
Pffs	Maximum Load obtained during an FFS rate consistent with ASTM E8, baseline load						
Pi-1	The first load drop or fracture load recorded from the first EHE or IHE test ran with the FFS as its target						
Pmax	If during FFS, see PFFS, other testing (IHE, EHE) the maximum load the specimen held before fracture						
Ptarget	For 1 st EHE or IHE test set Ptarget to FFS, for n th EHE or IHE test Ptarget is 1.1 times Pth-(n-1); Ex: Pth-2 = 100 lbs, Ptarget for test 3 will be 110 lbs						
Pth	Threshold load obtained during an RSL test per ASTM F1624						
Pth-1	The step before the first fracture load, Pi-1, is the threshold load for the first EHE or IHE test ran with the FFS as its target						
Pth-2	The second EHE or IHE threshold, performed with steps of 5% of P_{target}						
Rsb	Ratio of specimen crack strength to yield strength in bending,						
Td	Dynamic tear modulus						
UTS	Ultimate Tensile Strength						
Vsce	Corrosion potential of the specimen controlled with reference to an SCE						
W _E	strain energy density under the elastic portion of the curve typical stress-strain curve						
W _F	strain energy density under the under the necking or damage portion of the curve typical stress-strain curve						
Wu	strain energy density under the uniform plastic portion of the curve typical stress-strain curve						

Page 45

7 References

- 1. Brahimi, Aguilar, and Christensen. Metallurgical Analysis of Bay Bridge Broken Anchor Rods S1-G1 & S2-A6. Caltrans. (May 7, 2013).
- 2. Caltrans, Evaluation of the ASTM A354 Grade BD Rods, (September 30, 2014).
- 3. NMAB 328 "Rapid, Inexpensive Tests for Determining Fracture Toughness", National Academy of Sciences, Washington, D.C. (1976).
- 4. Raymond, L., "The Susceptibility of Fasteners to Hydrogen Embrittlement and Stress Corrosion Cracking", Chapter 39, "Handbook of Bolts and Bolted Joints" by John H. Bickford & Sayad Nassar, Published by Marcel Dekker, (1998).
- 5. Raymond, L., Editor, "Hydrogen Embrittlement Testing", ASTM STP 543, (1972).
- 6. Raymond, L., Editor, "Hydrogen Embrittlement: Prevention and Control", ASTM STP 962, (1985).
- 7. Brennan, F. P., Dover, W. D., "Stress Intensity Factors for Threaded Connections," Elsevier Science Ltd (1995).
- 8. Townsend Jr., H.E., "Effects of Zinc Coatings on the Stress Corrosion Cracking and Hydrogen Embrittlement of Low-Alloy Steel." Metallurgical Transactions A 6A (1975). Print.

ASTM Standards

ASTM A123 / A123M-13, Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

ASTM A354-11, Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners, ASTM International, West Conshohocken, PA, 2011, www.astm.org.

ASTM E8 / E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

ASTM E18-15, Standard Test Methods for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2015, www.astm.org.

ASTM E23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials , ASTM International, West Conshohocken, PA, 2012, www.astm.org.

ASTM E140-12be1, Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, ASTM International, West Conshohocken, PA, 2012, www.astm.org.

ASTM E399-12e3, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, ASTM International, West Conshohocken, PA, 2012, www.astm.org.

ASTM E812-91(1997), Standard Test Method for Crack Strength of Slow-Bend Precracked Charpy Specimens of High-Strength Metallic Materials (Withdrawn 2005), ASTM International, West Conshohocken, PA, 1997, www.astm.org.

ASTM E1290-08e1, Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement (Withdrawn 2013), ASTM International, West Conshohocken, PA, 2008, www.astm.org.

ASTM E1681-03(2013), Standard Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

ASTM F606 / F606M-14a, Standard Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets, ASTM International, West Conshohocken, PA, 2014, www.astm.org.

ASTM F1624-12, Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique, ASTM International, West Conshohocken, PA, 2012, www.astm.org.

ASTM F2078-08a, Standard Terminology Relating to Hydrogen Embrittlement Testing, ASTM International, West Conshohocken, PA, 2008, www.astm.org.

ASTM F2660-13, Standard Test Method for Qualifying Coatings for Use on A490 Structural Bolts Relative to Environmental Hydrogen Embrittlement, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

ASTM G3-14, Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing, ASTM International, West Conshohocken, PA, 2014, www.astm.org.

ASTM G129-00(2013), Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

Appendices

Α.	Test V Test Protocol
в.	Rod 4-V-153
c.	Rod 4-V-272
D.	Rod 1-V-S2-A2-A
E.	Rod 1-V-S2-A2-D
F.	Rod 3-V-9145
G.	Rod 3-V-10
н.	Rod 3-V-11192
١.	Rod 3-V-12
J.	Rod 12-V-b2E-4
к.	Rod 12-V-E109
L.	Rod 18-V-1
м.	Rod 18-V-2
N.	Rod 7-V-E012
о.	Rod 7-V-E027
Ρ.	Rod 7-V-E093
Q.	Rod 7-V-E096
R.	Rod 8-V-1
s.	Rod 13-V-CW-4
т.	Remnant Rod B1-F4428
U.	Remnant Rod B2-F5433
v.	Remnant Rod S3-D2439
w.	Remnant Rod B1-F4
х.	Remnant Rod 7-V-TR-9-E452
Υ.	Remnant Rod 7-V-TR-10-G
z.	Zinc Cracking
AA.	Plane Strain and Hardened Specimens468
BB.	Imposed Potentials

Appendix A: Test Protocol

A.1 Specimen Preparation

Rod samples were received at LRA and visually examined for general condition and major defects. Samples varied in length from 6 to 24 inches.

A 2.5-inch long segment was cut from the sample and specimens were machined from this segment by electrical discharge machining, EDM. Two types of specimens were prepared. One type of specimen was cut from the outer edge of the segment and included the thread and the hot dipped galvanized zinc, HDG-Zn, coating. The nominal dimensions of the threaded specimens were 0.61 inch wide (0.61W) by 0.4 inch thick (0.4B) by 2.5 inches long. A section was removed from the backside of the specimen to reduce the specimen width at the thread root to 0.55 inch (0.55W).

A second type of specimen was cut from the interior of the segment. Interior specimens were cut to dimensions of 0.4 in. wide by 0.4 in. thick by 2.25 in. long. A slot, 0.1 inch deep, was cut in the center of each fpc specimen as a starter slot for fatigue pre-cracking. The location from which an interior specimen was removed was noted and specimens were tested as outer diameter, mid-radius, or center specimens (OD, MR, and C). The two types of specimens are shown in **Figure A.1-1**. The distribution of specimens in a rod is illustrated in **Figure A.1-2**.

Figure A.1-1: Threaded Specimen and fpc Specimen

LRA@LouRaymond.com Phone: 949 474-0218

Figure A.1-2: Machining Plan for 3-inch Diameter Rod

A.2 Open Circuit Potential Testing of Rod Samples

The Open Circuit Potential, OCP, of each rod sample provided was measured per the procedure outlined in Special Projects Section 4.5.2 on OCP. Typically, the measured value for OCP would drop rapidly, to a minimum value, within a few hours. The OCP of the galvanizing varied from rod to rod from a low of -1.100 Vsce to a high of -0.850 Vsce.

A.3 Hardness Testing of Specimens

The hardness of each specimen was measured using a Rockwell Hardness Tester (Wilson Instrument Division, American Chain and Cable Co.) per ASTM E8. The Rockwell C Hardness (HRC) scale was used for each measurement taken and the hardness was measured at six points on the side of the specimen, spanning its length. The measured hardness was then correlated to the Ultimate Tensile Strength of the material per ASTM E140.

A.4 Fatigue Pre-crack Specimen Testing

Prior to testing, SEN(B) specimens were fatigue pre-cracked within the limits defined by ASTM E399 and E1820. The EDM slot was extended by fatigue approximately 0.08 to 0.100 inches. The precise depth of the pre-crack is measured following testing. The final stress intensity used during fatigue pre-cracking, typically 15 ksi \sqrt{in} , was less than 60% of the measured stress intensity for crack initiation, typically 25 ksi \sqrt{in} to 35 ksi \sqrt{in} . For the SEN(B) specimens that required a fatigue pre-crack, a Physmet FCM-300B was used to pre-crack the specimens. This unique piece of equipment uses constant displacement rings to produce cracks ranging from 0.005" to 0.250" in less than 10 minutes.

To provide baseline reference data for each rod and specimen type, a specimen of each rod and type (MR, OD or Center) is tested to rupture using a rate consistent with ASTM E8. This establishes a fast fracture strength load, PFFs, for a given specimen geometry. Data recorded during this test was also used to calculate KIctod per ASTM F1290-99 which is an estimate for the material's fracture toughness, KIc. Subsequently, the impact energy was measured and used to calculate the Dynamic Tear Modulus, Td. Td is an estimate of the energy absorbed per unit crack extension to resist crack propagation under moderate strain rates typical for tensile testing.

To measure the effect of residual, or internal hydrogen in the steel due to processing, IHE testing was performed. The KI-IHE, threshold in air, is determined per ASTM F1624, for MR and OD specimens.

To measure the EHE susceptibility of the material, fpc specimens were tested in a salt-water environment (3.5% NaCl in distilled water) using the step load procedure defined in ASTM F1624 Section 8 as modified in Annex A1. For the majority of testing, an external potential of -1.106 Vsce was applied to simulate the most negative potential that would be applied by a galvanized coating recorded in Test IV. The KI-EHE, threshold in salt water, is determined per ASTM F1624.

A.5 Threaded Specimen Testing

To provide baseline reference data for each rod, a threaded specimen was tested to rupture using a rate consistent with ASTM E8. This established a fast fracture strength load, PFFS, for a given specimen geometry. The specimens are not fatigue pre-cracked and thus are "irregular geometry-type" specimens. However, a value for an effective stress intensity can be calculated assuming the specimen is a notched specimen where the geometry of the thread takes the place of the notch. This value of the stress intensity indicates the uncracked response of the threaded rod and thus is designated as KIp indicating a significant notch root radius of ρ .

To measure the effect of residual, or internal hydrogen in the steel due to processing, IHE testing was performed. The KIp-IHE, threshold in air, is determined per ASTM F1624 using threaded specimens.

To measure the EHE susceptibility of the material, threaded specimens were tested in a salt-water environment (3.5% NaCl in distilled water) using the step load procedure defined in ASTM F1624 Section 8 as modified in Annex A1. Prior to the test being started, a scribe mark was applied to the coating at the root of a thread to simulate damaged coating or a "holiday" in the coating. For the majority of testing, an external potential of -1.106 Vsce was applied to simulate the most negative potential that would be applied by a galvanized coating. The KIp-EHE, threshold in salt water, is determined per ASTM F1624 with Holiday.

To determine the KIp-EHE threshold, two analysis methods were used depending on whether the specimen threads were rolled or machined. For rolled threads, the visual threshold determination method was used. For machined threads, the stiffness threshold determination method was used unless the visual threshold was very well defined. More information on the fracture mechanisms can be found in Section 2.5.

A.5.1 Post EHE Test Thread Root Photos

Photographs were taken of the thread roots of threaded specimens post EHE testing and dynamic impact loading. Due to the clarity of some post EHE thread root photos, photos were taken again but post impact loading and on adjacent threads to the fracture face instead of the most susceptible thread root with the original EHE crack. A longer crack represents a test that initiated cracking over a weekend or holiday and could not stop cracking until a technician unloaded the specimen from the RSL test machine. These longer cracks are most often from the most susceptible thread root with the original EHE crack. Other photos of thread roots with little cracks to none were taken post impact testing. These thread roots were adjacent to the thread root that was split open during dynamic impact loading (original EHE crack) creating the fracture face. These two types of photographs show the spectrum of an EHE crack at the thread root of the most susceptible thread root to the adjacent threads.

A.6 Nomenclature for Test V Test Result Parameters

Figure A.6-1 shows the nomenclature for Test V test result parameters used throughout the Test V Summary Tables in the following Appendices.

Hardness (HRC)=> Hardness Rockwell 'C' Scale per ASTM E23UTS (ksi)=> Ultimate Tensile Strength per ASTM E140Ptarget (lbs)=> Target load for RSL loading profile = % PmaxPmax (lbs)=> Maximun load defined in ASTM F1624Pth (lbs)=> Threshold load defined in ASTM F1624%FS (Pth/Pmax)=> Percentage Fracture Strength; i.e., Pth/PmaxKmax (ksivin)=> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820Klscc (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS) $\delta E/\delta t(10^*s^{-1})$ => Strain Ratea (in)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KIcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress IntensityFu=> The minimum ultimate strength as a fuction of stress intensity		
UTS (ksi)⇒ Ultimate Tensile Strength per ASTM E140Ptarget (lbs)⇒ Target load for RSL loading profile = % PmaxPmax (lbs)=> Maximun load defined in ASTM F1624Pth (lbs)=> Threshold load defined in ASTM F1624%FS (Pth/Pmax)=> Percentage Fracture Strength; i.e., Pth/PmaxKmax (ksivin)=> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820Klscc (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimenKlp-EHE (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSomet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 = KIcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Hardness (HRC)	=> Hardness Rockwell 'C' Scale per ASTM E23
Ptarget (lbs) ⇒> Target load for RSL loading profile = % Pmax Pmax (lbs) ⇒> Maximun load defined in ASTM F1624 Pth (lbs) ⇒> Threshold load defined in ASTM F1624 %FS (Pth/Pmax) ⇒> Percentage Fracture Strength; i.e., Pth/Pmax Kmax (ksivin) ⇒> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820 Klscc (ksivin) ⇒> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimen Klp-tHE (ksivin) ⇒> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimen DTI (vin) ⇒> Damage Tolerance Index; i.e., Kthreshold/UTS onet (ksi) ⇒> Net stress Rsb ⇒> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS) Hsrb ⇒> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS) δE/δt (10 ⁸ s ⁻¹) ⇒> Strain Rate a (in) ⇒> Measured crack depth of fatigue precrack for SEN(B) Klctod (ksivlin) ⇒> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ Klc Step Load Profile ⇒> The loading profile used on RSL [™] software P* (lbs) ⇒> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)	UTS (ksi)	=> Ultimate Tensile Strength per ASTM E140
Pmax (lbs)⇒> Maximun load defined in ASTM F1624Pth (lbs)⇒> Threshold load defined in ASTM F1624%FS (Pth/Pmax)⇒> Percentage Fracture Strength; i.e., Pth/PmaxKmax (ksivin)=> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820Klscc (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimenKlp-EHE (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net stress/UTS)δ{{/st} (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Ptarget (Ibs)	=> Target load for RSL loading profile = % Pmax
Pth (lbs) => Threshold load defined in ASTM F1624 %FS (Pth/Pmax) => Percentage Fracture Strength; i.e., Pth/Pmax Kmax (ksivin) => Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820 Klscc (ksivin) => Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimen Klp-EHE (ksivin) => Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimen DTI (vin) => Damage Tolerance Index; i.e., Kthreshold/UTS onet (ksi) => Net stress Rsb => Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS) Hsrb => Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS) δ{{/}6t (10 ⁻⁸ s ⁻¹) => Strain Rate a (in) => Measured crack depth of fatigue precrack for SEN(B) Klctod (ksivin) => The loading profile used on RSL™ software P* (lbs) => Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity Fu => The minimum ultimate strength as a fuction of stress intensity	Pmax (lbs)	=> Maximun load defined in ASTM F1624
%FS (Pth/Pmax)=> Percentage Fracture Strength; i.e., Pth/PmaxKmax (ksivin)=> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820Klscc (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimenKlp-EHE (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δ{/δt (10 ⁻⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL [™] softwareP* (lbs)=> The minimum ultimate strength as a fuction of stress intensity	Pth (lbs)	=> Threshold load defined in ASTM F1624
Kmax (ksivin)=> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820Klscc (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimenKlp-EHE (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δE/δt (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	%FS (Pth/Pmax)	=> Percentage Fracture Strength; i.e., Pth/Pmax
KIscc (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimenKIp-EHE (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δ{/bt} (10 ⁻⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Kmax (ksi√in)	=> Stress Intensity Factor calculated from maximum load in fracture toughness test per ASTM E399/E1290/E1820
KIp-EHE (ksivin)=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimenDTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δ{// sc1}=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KIcStep Load Profile=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Klscc (ksi√in)	=> Threshold stress intensity for onset of stress corrosion crack growth of a fatigue pre-cracked specimen
DTI (vin)=> Damage Tolerance Index; i.e., Kthreshold/UTSonet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δE/δt (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	KIp-ене (ksi√in)	=> Threshold stress intensity for onset of stress corrosion crack growth of a threaded specimen
σnet (ksi)=> Net stressRsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δE/δt (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	DTI (vin)	=> Damage Tolerance Index; i.e., Kthreshold/UTS
Rsb=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δε/δt (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KIcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	σnet (ksi)	=> Net stress
Hsrb=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)δξ/δt (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Rsb	=> Specimen strength ratio in bending per ASTM E812/E2078, (max local net stress/UTS)
δE/δt (10 ⁸ s ⁻¹)=> Strain Ratea (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksi√in)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Hsrb	=> Hydrogen Susceptibility ratio in bending per ASTM E2078, (max local net SCC stress/UTS)
a (in)=> Measured crack depth of fatigue precrack for SEN(B)Klctod (ksi√in)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KlcStep Load Profile=> The loading profile used on RSL [™] softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	δ ε/δt (10⁻⁸s⁻¹)	=> Strain Rate
KIctod (ksivin)=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KIcStep Load Profile=> The loading profile used on RSL [™] softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	a (in)	=> Measured crack depth of fatigue precrack for SEN(B)
Step Load Profile=> The loading profile used on RSL™ softwareP* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Klctod (ksivin)	=> The measured stress intensity factor from crack-tip opening displacement per ASTM E1290 ≈ KIc
P* (lbs)=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)Fu=> The minimum ultimate strength as a fuction of stress intensity	Step Load Profile	=> The loading profile used on RSL [™] software
Fu => The minimum ultimate strength as a fuction of stress intensity	P* (lbs)	=> Normalized Load (load that a standard-sized specimen would experience to effect the same Stress Intensity)
	Fu	=> The minimum ultimate strength as a fuction of stress intensity

Figure A.6-1 Nomenclature for Test V Test Result Parameters

Appendix B: Rod 4-V-1

B.1 Description of Sample

Rod 4-V-1 was a Pier E2 Bearing Bolt (Top Housing: B1, B2, B3, B4) from the same heat of material that was tested in Test Rig 5 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 2 inches in diameter with rolled threads. The segment from this section of the rod provided to LRA is shown in **Figure B.1-1**.

Figure B.1-1: Pier E2 Bearing Bolt (Top Housing), Rod 4-V-1

B.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 4-V-1 and can be seen versus time in **Figure B.2-1**. The final OCP recorded for Rod 4-V-1 was Vsce=-0.867 V.

Figure B.2-1: Open Circuit Potential for Rod 4-V-1

B.3 Hardness

The hardness data and profile for sample 4-V-1 are shown in **Table B.3-1** and **Figure B.3-1**.

s /N	Hardness	Average	
3/10	(HRC)	(HRC)	
Center 1, FFS	33.5	33.5	
MR 1, FFS	36.0		
MR 2, IHE	35.0	25 1	
MR 3, EHE	35.5	33.1	
MR 4, EHE	34.0		
Thd 7, FFS	36.0		
Thd 2, IHE	36.0		
Thd 4, EHE	36.5	35.9	
Thd 6, EHE	36.0		
Thd 8, EHE	35.0		

Table B.3-1: Hardness Data of Rod 4-V-1 Specimen

Figure B.3-1: Hardness Profile of Rod 4-V-1

B.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables. The specimens are listed first with the FFS test specimen, followed by the IHE test specimen, and last with the EHE test specimen in consecutive sample order.

B.4.1 Fatigue Pre-crack Results:

Test V ASTM F1624 Bolt Specimen Results							
	Threaded Rod ID # 4-V-1						
LRA Job No.:	TYL130901		Structural Components: Pier E2 Bearing Bolts-Top Housing				
Rod#:	4-V-1			(B1, B2, B3,	B4)		
Product Form:	1e		omments: Rolled	Threads: Same H	laat as Tast Rig #	5 in Test IV	
Rod OD:	2"		omments. Noned	inieaus, same i		511163(1)	
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE	
			K _{max}	85.4			
			DTI _{th}	0.53			
	MR 1, FFS	36.0	Fu	1.00			
			Strain Rate	7000			
			(x10 ⁻⁸ in/in/sec)	7900			
			K _{threshold}		92.7		
			DTI _{th}		0.59		
	MR 2, IHE	35.0	Fu		1.09		
			Strain Rate				
_			(x10 ⁻⁸ in/in/sec)		2.3		
ked	MR 3, EHE	35.5	Kthrashald			23.3	
crao						0.15	
re-			Fu			0.27	
ue F			Strain Rate			-	
atig			(x10 ⁻⁸ in/in/sec)			4.5	
Ű			Kthreshold			26.9	
			DTI _{+h}			0.18	
	MR 4. EHE	34.0	Fu			0.31	
			Strain Rate				
			(x10 ⁻⁸ in/in/sec)			1.5	
			Ктах	86.1			
				0.57			
	Center 1. FFS	33.5	Fu	1.01			
	,		Strain Rate				
			(x10 ⁻⁸ in/in/sec)	9500			

B.4.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results							
	Threaded Rod ID # 4-V-1						
LRA Job No.:	TYL130901		Structural Componer	nts: Pier E2 Beari	ng Bolts-Top H	ousing	
Rod#:	4-V-1			(B1, B2, B3, B4)			
Product Form:	1e	Co	omments: Rolled Thre	eads: Same Heat	as Test Rig #5 i	n Test IV	
Rod OD:	2"						
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE	
			Pmax* (lbs)	331.3			
			Fu	1.13			
	Thd 7, FFS	36.0	Rsb	1.5			
			Strain Rate	2000			
			(x10 ⁻⁸ in/in/sec)	2000			
			P _{threshold} * (lbs)		323.8		
			Fu		1.11		
	Thd 2, IHE	36.0	Hsr		1.4		
			Strain Rate				
			(x10 ⁻⁸ in/in/sec)		1.7		
	Thd 4, EHE		P _{threshold} * (lbs)			291.5	
ed			Fu			1.00	
ead		36.5	Hsr			1.3	
Thr			Strain Rate				
			(x10 ⁻⁸ in/in/sec)			1.3	
			P _{threshold} * (Ibs)			311.1	
	Thd 6, EHE		Fu			1.06	
		36.0	Hsr			1.4	
			Strain Rate				
			(x10 ⁻⁸ in/in/sec)			2.0	
			P _{threshold} * (Ibs)			292.9	
			Fu			1.00	
	Thd 8, EHE	35.0	Hsr			1.3	
	,		Strain Rate				
			(x10 ⁻⁸ in/in/sec)			1.6	

					Comments								No Holiday	Did Not Crack in Holiday	Did Not Crack in Holiday
					Fu	1.00	1.09	0.27	0.31	1.01	1.13	1.11	1.00	1.06	1.00
					P* (Ibs)						331.3	323.8	291.5	311.1	292.9
					Step Load Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	0.4 in/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4
					Klctod (ksiVin)	145.7				158.9					
					a (in)	0.2072	0.2119	0.2089	0.2095	0.2246					
					δ£/δt (10 ⁻⁸ s ⁻¹)	0062	2.3	4.5	1.5	9500	2000	1.7	1.3	2.0	1.6
					Rsb, Hsrb	1.8	2.0	0.5	9.0	2.0	1.5	1.4	1.3	1.4	1.3
					G net (ksi)	286.8	314.7	78.5	90.8	302.2	237.3	231.5	214.4	222.3	209.4
					DTI (vîn)	0.53	0.59	0.15	0.18	0.57	09.0	0.58	0.52	0.56	0.54
					Kmax, Klscc, Klp-EHE (ksivin)	85.4	92.7	23.3	26.9	86.1	96.6	94.4	85.0	90.7	85.4
					%FS (Pth/Pmax)	100.0%	108.5%	27.3%	31.5%	100.0%	100.0%	97.7%	88.0%	93.9%	88.4%
					Pmax, Pth (Ibs)	99.1	3331.2	26.7	30.8	86.5	374.0	373.4	298.8	355.4	330.4
					Pmax (Ibs)	99.1	3331.2	40.2	39.6	86.5	374.0	373.4	317.9	362.1	340.9
					Ptarget (Ibs)	99.1	2147.0	67.0	44.0	86.5	374.0	264.0	160.0	285.0	220.0
					UTS (ksi)	162	157	159	153	151	162	162	164	162	157
					Hardness (HRC)	36.0	35.0	35.5	34.0	33.5	36.0	36.0	36.5	36.0	35.0
	TYL130901	4-V-1	1e	2"	Environment	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	N/S	MR 1, FFS	MR 2, IHE	MR 3, EHE	MR 4, EHE	Center 1, FFS	Thd 7, FFS	Thd 2, IHE	Thd 4, EHE	Thd 6, EHE	Thd 8, EHE
1		atigue Pre- cracked						lite7 cr		Threaded					

B.4.3 Summary Table:

B.5 Fatigue Pre-cracked Specimen Test Results

B.5.1 MR 1, FFS:

Figure B.5-1: Rod 4-V-1 MR 1, Graphical FFS Results

Figure B.5-2: Fracture Face of Rod 4-V-1 MR 1, FFS

Figure B.5-3: SEM of Rod 4-V-1 MR 1, FFS

fpc – OL Transition 50X

Overload 1000X

B.5.2 MR 2, IHE:

Figure B.5-4: Rod 4-V-1 MR 2, Graphical IHE Results

Figure B.5-5: Fracture Face of Rod 4-V-1 MR 2, IHE

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

B.5.3 MR 3, EHE:

Figure B.5-6: Rod 4-V-1 MR 3, Graphical EHE Results

Figure B.5-7: Fracture Face of Rod 4-V-1 MR 3, EHE

Macro 30X

Intergranular 500X

Intergranular 1000X

B.5.4 MR 4, EHE:

Figure B.5-9: Rod 4-V-1 MR 4, Graphical EHE Results

Figure B.5-10: Fracture Face of Rod 4-V-1 MR 4, EHE

Figure B.5-11: SEM of Rod 4-V-1 MR 4, EHE

Macro 30X

Intergranular 500X

Intergranular 1000X

B.5.5 Center 1, FFS:

Figure B.5-12: Rod 4-V-1 Center 1, Graphical FFS Results

Figure B.5-13: Fracture Face of Rod 4-V-1 Center 1, FFS
B.6 Threaded Specimen Test Results

B.6.1 Thd 7, FFS:

Figure B.6-1: Rod 4-V-1 Thd 7, Graphical FFS Results

Figure B.6-2: Rod 4-V-1 Thd 7, FFS Fracture Face

LRA@LouRaymond.com Phone: 949 474-0218

B.6.2 Thd 2, IHE:

Figure B.6-3: Rod 4-V-1 Thd 2, Graphical IHE Results

Figure B.6-4: Rod 4-V-1 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

B.6.3 Thd 4, EHE:

Figure B.6-5: Rod 4-V-1 Thd 4, Graphical EHE Results

Figure B.6-6: Rod 4-V-1 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

LRA@LouRaymond.com Phone: 949 474-0218

Figure B.6-7: SEM of Rod 4-V-1 Thd 4, EHE

3) Impact, Brittle Cleavage 1000X

500X

B.6.4 Thd 6, EHE:

Figure B.6-8: Rod 4-V-1 Thd 6, Graphical EHE Results

Figure B.6-9: Rod 4-V-1 Thd 6 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

B.6.5 Thd 8, EHE:

Figure B.6-10: Rod 4-V-1 Thd 8, Graphical EHE Results

Figure B.6-11: Rod 4-V-1 Thd 8 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix C: Rod 4-V-2

C.1 Description of Sample

Rod 4-V-2 was a Pier E2 Bearing Bolt (Top Housing: B1, B2, B3, B4) from the same heat of material that was tested in Test Rig 5 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 2 inches in diameter with rolled threads. The segment from this section of the rod provided to LRA is shown in **Figure C.1-1**.

Figure C.1-1: Pier E2 Bearing Bolt (Top Housing), Rod 4-V-2

C.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 4-V-2 can be seen in **Figure C.2-1** where the black portion of the Shadowgraph represents the rod material. As can be seen from **Figure C.2-1**, these rolled thread roots show uniformity around the root radius.

Figure C.2-1: Thread Comparison of Two Threads of Rod 4-V-2

C.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 4-V-1 and can be seen versus time in **Figure C.3-1**. The final OCP recorded for Rod 4-V-2 was Vsce=-0.827 V.

Figure C.3-1: Open Circuit Potential for Rod 4-V-2

C.4 Hardness

The hardness data and profile for sample 4-V-2 are shown in **Table C.4-1** and **Figure C.4-1**.

C /N	Hardness	Average			
3/11	(HRC)	(HRC)			
Center 1, FFS	33.5	33.5			
MR 1, FFS	36.0				
MR 2, IHE	35.0	25 1			
MR 3, EHE	35.5	33.1			
MR 4, EHE	34.0				
Thd 7, FFS	36.0				
Thd 2, IHE	36.0				
Thd 4, EHE	36.5	35.9			
Thd 6, EHE	36.0				
Thd 8, EHE	35.0				

Table C.4-1: Hardness Data of Rod 4-V-2 Specimen

Figure C.4-1: Hardness Profile of Rod 4-V-2

C.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

C.5.1 Fatigue Pre-crack Results:

Test V ASTM F1624 Bolt Specimen Results												
	Γ	1	Threaded Rod ID a	# 4-V-2								
LRA Job No.:	TYL130523	Structu	ural Components: F	Pier F2 Bearing B	olts-Top Housing	g (B1, B2, B3, B4)						
Rod#:	4-V-2					5 (,,,,						
Product Form:	1e		Comments : Rolled Threads; Same Heat as Test Rig #5 in Test IV									
Rod OD:	2"											
	Sample #/ID	HRC	HRC K-FFS K-IHE									
			K _{max}	84.3								
			DTI _{th}	0.53								
	MR 1, FFS	35.5	Fu	0.99								
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)	8700								
			K _{threshold}		95.9							
					0.60							
	MR 3. IHE	35.5	Eu		1 12							
	····· ····		Strain Rate		1.12							
			$(x10^{-8} in/in/coc)$		3.0							
ted			(X10 III/III/SEC)			20.7						
rack			Kthreshold			30.7						
e-ci			DTI _{th}			0.19						
e Pr	MR 2, EHE	35.5	Fu			0.36						
igue			Strain Rate			1.5						
Fat			(x10 ⁻⁸ in/in/sec)			1.5						
			K _{threshold}			27.5						
			DTI _{th}			0.17						
	MR 4, EHE	36.0	Fu			0.32						
			Strain Rate			1.4						
			(x10 ⁻⁸ in/in/sec)			1.4						
			K _{max}	83.2								
			DTI _{th}	0.56								
	Center 1, FFS	33.0	Fu	0.97								
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)	9700								

C.5.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results													
	TVI 130523		Threaded Roa ID	# 4- V-2									
Bod#:	Rod#: 4-V-2 Structural Components: Pier E2 Bearing Bolts-Top Housing (B1												
Product Form:	1e												
Rod OD:	2"		Comments : Rolled Threads; Same Heat as Test Rig #5 in Test IV										
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE							
			Pmax* (lbs)	336.4									
			Fu	1.15									
	Thd 1, FFS	36.0	Rsb	1.5									
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)	4000									
			P _{threshold} * (lbs)		334.0								
			Fu		1.14								
	Thd 2, IHE	35.5	Hsr		1.5								
_			Strain Rate										
Idec			(x10 ⁻⁸ in/in/sec)		1.7								
Irea			P _{threshold} * (lbs)			299.4							
È			Fu			1.02							
	Thd 4, EHE	35.5	Hsr			1.3							
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)			1.9							
			P _{threshold} * (lbs)			290.1							
			Fu			0.99							
	Thd 5, EHE	36.0	Hsr			1.3							
			Strain Rate			0.5							
			(x10 ⁻⁸ in/in/sec)			0.9							

						21								rack	ay	rack	ay															
						Comme								Did Not C	In Holid	Did Not C	In Holid															
					i	2	0.99	0.36	1.12	0.32	0.97	1.15	1.14	1 00		000	CC.0															
					*d	(sql)						336.4	334.0	299.4		1 000	720.1															
				Step Load	Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	150 lbs/min	10/5/2,4	10/5/2 4		10/6/1 0	0'T /C /NT																
					Klctod	(ksiVin)	149.3				152.0																					
					a	(in)	0.2160	0.2177	0.2223	0.2188	0.2278	N/A	N/A	N/A		VI / V	۲/N															
					δ£/δt	(10 ⁻⁸ s ⁻¹)	8700	1.5	3.0	1.4	9700	4000	1.7	1 9		00	о. О															
					411 4-0	кѕо, нъго	1.8	0.7	2.1	0.6	2.0	1.5	1.5	13	ì	c 1	C.1															
						σnet	(ksi)	289.7	105.9	333.2	95.4	295.3	239.6	239.4	214.1		0 000	2.002														
																				DTI	(vin)	0.53	0.19	0.60	0.17	0.56	0.61	0.61	0 55		0 5 7	7C-0
Rod ID # 4-V-2 - pt Bend Test				Kmax, Klscc,	KIp-EHE (ksivin)	84.3	30.7	95.9	27.5	83.2	98.1	97.4	87 3	2	916	04.U																
Threaded I RSL [™] (B) 4					%FS	(Pth/Pmax)	100.0%	36.4%	113.8%	32.6%	100.0%	100.0%	99.3%	%U 98		706 30	00.4.00															
									Pmax, Pth	(Ibs)	90.6	32.8	3196.4	28.8	80.6	373.5	374.5	341 9		C 01C	C'OTC											
											Ртах	(Ibs)	90.6	41.9	3196.4	34.2	80.6	373.5	374.5	351 4		1900	7.000									
					Ptarget	(Ibs)	90.6	59.7	2457.6	36.0	80.6	373.5	301.5	280.0		0.000	700.0															
					UTS	(ksi)	159	159	159	162	149	162	159	159		167	707															
					Hardness	(HRC)	35.5	35.5	35.5	36.0	33.0	36.0	35.5	35 5		0 90	0.00															
	TYL130523	4-V-2	1e	2"		Environment	Air	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	Air	Air	Air	3 5% NaCl @ -1 106V)	2 EV Naci @ 1 106V	v uvit. ビーション NdCI で - 1.100 v															
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	i di s	s/N		MR 2, EHE	MR 3, IHE	MR4, EHE	Center 1, FFS	Thd 1, FFS	Thd 2, IHE	Тһдд ЕНЕ		тьа с сос	IIIU 2, EFTE															
	<u> </u>				F	жөс ər	ugiti crac		p	əpea	Тһгеадед																					

Summary Table of Test V ASTM F1624 Bolt Specimen Results

C.5.3 Summary Table:

C.6 Fatigue Pre-cracked Specimen Test Results

C.6.1 NMR 1, FFS:

Figure C.6-1: Rod 4-V-2 MR 1, Graphical FFS Results

Figure C.6-2: Fracture Face of Rod 4-V-2 MR 1, FFS

Figure C.6-3: Rod 4-V-2 MR 2, Graphical EHE Results

Figure C.6-4: Fracture Face of Rod 4-V-2 MR 2, EHE

C.6.3 MR 3, IHE:

Figure C.6-5: Rod 4-V-2 MR 3, Graphical IHE Results

Figure C.6-6: Fracture Face of Rod 4-V-2 MR 3, IHE

Figure C.6-7: Rod 4-V-2 MR 4, Graphical EHE Results

Figure C.6-8: Fracture Face of Rod 4-V-2 MR 4, EHE

C.6.5 Center 1, FFS:

Figure C.6-9: Rod 4-V-2 Center 1, Graphical FFS Results

Figure C.6-10: Fracture Face of Rod 4-V-2 Center 1, FFS

C.7 Threaded Specimen Test Results

C.7.1 Thd 1, FFS:

Figure C.7-1: Rod 4-V-2 Thd 1, Graphical FFS Results

Figure C.7-2: Rod 4-V-2 Thd 1 FFS Fracture Face

LRA@LouRaymond.com Phone: 949 474-0218

2) Crack Initiation 100X

Figure C.7-3: SEM of Rod 4-V-2 Thd 1, FFS

3) Ductile Overload 1000X

Page 84

Figure C.7-4: Rod 4-V-2 Thd 2, Graphical IHE Results

Figure C.7-5: Rod 4-V-2 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

C.7.3 Thd 4, EHE:

Figure C.7-6: Rod 4-V-2 Thd 4, Graphical EHE Results

Figure C.7-7: Rod 4-V-2 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure C.7-8: SEM of Rod 4-V-2 Thd 4, EHE

Thread Root 30X

2) Intergranular 500X

1) Ductile Overload 1000X

3) Intergranular 1000X

Figure C.7-9: Rod 4-V-2 Thd 5, Graphical EHE Results

Figure C.7-10: Rod 4-V-2 Thd 5 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix D: Rod 1-V-S2-A2-A

D.1 Description of Sample

Rod 1-V-S2-A2-A was located at the top of the Shear Key Anchor Bolts on Pier E2 (S1/S2) and was from the same group of material that was tested in Test Rigs 12 and 13 in Test IV. The letter A at the end of the serial number identifies that this section of the 2008 Rod 1-V-S2-A2 was located opposite the fracture end (live end). It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 3 inches in diameter with machined threads. The segment from this section of the rod provided to LRA is shown in **Figure D.1-1**.

Figure D.1-1: Pier E2 Shear Key Anchor Bolt (Bottom, Live End, S1/S2), Rod 1-V-S2-A2-A

D.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 1-V-S2-A2-A can be seen in **Figure D.2-1** where the black portion of the Shadowgraph represents the rod material. As can be seen from **Figure D.2-1**, these machined thread roots are not uniform about the root radius.

Figure D.2-1: Thread Comparison of Three Threads of Rod 1-V-S2-A2-A

D.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 1-V-S2-A2-A and can be seen versus time in **Figure D.3-1**. The final OCP recorded for Rod 1-V-S2-A2-A was Vsce=-0.893 V.

Figure D.3-1: Open Circuit Potential for Rod 1-V-S2-A2-A

D.4 Hardness

The hardness data and profile for sample 1-V-S2-A2-A are shown in Table D.4-1 and Figure D.4-1.

Г

C /N	Hardness	Average				
5/19	(HRC)	(HRC)				
Center 1, FFS	31.5	31.5				
MR 2, IHE	32.0					
MR 3, EHE	35.5					
MR 4, EHE	35.0	34 5				
MR 5, EHE	33.5	54.5				
MR 6, FFS	35.5					
MR 8, EHE	35.5					
OD 1, FFS	37.0					
OD 2, IHE	36.5					
OD 3, EHE	37.5					
OD 4, EHE	35.5					
OD 5, IHE	37.5					
OD 6, EHE	37.5					
OD 7, EHE	37.5	36.7				
Thd 1, FFS	36.5					
Thd 2, IHE	36.0					
Thd 3, EHE	36.0					
Thd 4, EHE	36.0					
Thd 5, EHE	36.5					
Thd 6, EHE	36.5					

Table D.4-1: Hardness Data of Rod 1-V-S2-A2-A Specimen

Figure D.4-1: Hardness Profile of Rod 1-V-S2-A2-A

D.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

D.5.1 Fatigue Pre-cracked Results:

Test V ASTM F1624 Bolt Specimen Results										
LRA Job No.: TYL130901										
Rod#:	1-V-S2-A2-A	9	Structural Compor	hent : Shear Key A	nchor Bolts-Bott	om (S1/S2)				
Product Form:	1e		Comments: N	lachined Threads	; 2008 at Top (Liv	e End)				
Rod OD:	3"		Same Group of	Material as Test I	, Rig #12 and #13 in	Test IV				
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE				
			Kmax	84.9						
			DTI _{th}	0.51						
	OD 1, FFS	37.0	Fu	0.96						
			Strain Rate	8500						
			(x10 ⁻⁸ in/in/sec)	8300						
			K _{threshold}		77.7					
			DTI _{th}		0.47					
	OD 2, IHE	36.5	Fu		0.88					
			Strain Rate		2.2					
			(x10 ⁻⁸ in/in/sec)		2.2					
			K _{threshold}			49.9				
			DTI _{th}			0.30				
	OD 3, EHE	37.5	Fu			0.56				
			Strain Rate			2.3				
p			(x10 ⁻⁸ in/in/sec)			_				
acke			K _{threshold}			40.4				
e-cra	OD 4, EHE		DTI _{th}			0.25				
e Pre		35.5	Fu Chucin Data			0.46				
igue			Strain Rate $(12.10^{-8} \text{ in } (12.10)^{-8})$			1.5				
Fat			(X10 In/In/sec)		70.1					
			► threshold		79.1					
		27 E	DII _{th}		0.47					
	00 3, INE	37.5	FU Strain Pato		0.89					
			$(v_10^{-8} in/in/coc)$		1.8					
						10.2				
			N threshold			0.11				
	OD 6. FHF	37.5	Dri _{th}			0.11				
	000, 2112	07.0	Fu Strain Rate			0.22				
			$(x10^{-8} in/in/sec)$			1.3				
			K _{threshold}			23.6				
			DTL			0.14				
	OD 7, EHE	37.5	Fu			0.27				
	•		Strain Rate							
			(x10 ⁻⁸ in/in/sec)			1.0				

r

		1	Threaded Rod ID	# 1-V-S2-A2-A								
) No.:	b No.: TYL130901		Structural Compor	nent : Shear Key A	Anchor Bolts-Bott	om (S1/S2)						
Rod#:	Rod#: 1-V-S2-A2-A	-	-									
orm:	Form: 1e		Comments: N	lachined Threads	; 2008 at Top (Liv	e End)						
d OD:	od OD: 3"											
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE						
			Kmax	78.9								
			DTI _{th}	0.49								
	MR 6, FFS	35.5	Fu	0.89								
			Strain Rate	0700								
			(x10 ⁻⁸ in/in/sec)	8500								
			K _{threshold}		80.9							
			DTI _{th}		0.56							
	MR 2, IHE	32.0	Fu		0.91							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		2.2							
F			K _{threshold}			30.2						
			DTI _{th}			0.19						
	MR 3, EHE	35.5	Fu			0.34						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			2.0						
			K _{threshold}			24.1						
			DTI _{th}			0.15						
	MR 4, EHE	35.0	Fu			0.27						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.2						
			K _{threshold}			31.0						
			DTI _{th}		0.21							
	MR 5, EHE	33.5	Fu			0.35						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.1						
			K _{threshold}			27.3						
						0 17						
	MR 8, EHE	35.5	Fu			0.31						
	-,		Strain Rate			0.01						
			$(x10^{-8} in/in/sec)$			0.9						
F			Kmax	74.1								
			DTI	0.52								
	Center 1. FF	31.5	Fu	0.84								
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)	0 ⁻⁸ in/in/sec) 8400								
	Sample #/ID MR 6, FFS MR 2, IHE MR 3, EHE MR 4, EHE MR 5, EHE Center 1, FFS	HRC 35.5 32.0 35.5 35.5 35.5 33.5 33.5	Same Group of Kmax DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) K _{threshold} DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) K _{threshold} DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) K _{threshold} DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) K _{threshold} DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) K _{threshold} DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) K _{threshold} DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) Kmax DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec) Kmax DTI _{th} Fu Strain Rate (x10 ⁸ in/in/sec)<	K-FFS 78.9 0.49 0.89 8500	K-IHE 80.9 0.56 0.91 2.2	K-EH K-EH 30.2 0.19 0.34 2.0 24.1 0.15 0.27 1.2 31.0 0.21 0.35 1.1 27.3 0.17 0.31 0.9						

D.5.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results												
		٦	Threaded Rod ID # 1-	V-S2-A2-A								
LRA Job No.:	TYL130901		Structural Compone	ant: Shear Key Ar	chor Bolts-Botto	m (\$1/\$2)						
Rod#:	1-V-S2-A2-A		Structural compone			m (31/32)						
Product Form:	1e		Comments: Ma	chined Threads;	2008 at Top (Live	End)						
Rod OD:	3"		Same Group of Material as Test Rig #12 and #13 in Test IV									
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE						
			Pmax* (lbs)	337.8								
			Fu	1.11								
	Thd 1, FFS	36.5	Rsb	1.5								
			Strain Rate	9000								
			(x10 ⁻⁸ in/in/sec)	5000								
			P _{threshold} * (lbs)		332.3							
			Fu		1.09							
	Thd 2, IHE	36.0	Hsr		1.5							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		2.2							
			P _{threshold} * (lbs)			240.4						
			Fu			0.79						
	Thd 3, EHE	36.0	Hsr			1.1						
σ			Strain Rate			2.2						
ade			(x10 ⁻⁸ in/in/sec)			2.2						
hrea			P _{threshold} * (lbs)			221.6						
F			Fu			0.73						
	Thd 4, EHE	36.0	Hsr			1.0						
			Strain Rate			2.0						
			(x10 ⁻⁸ in/in/sec)			2.0						
			P _{threshold} * (lbs)			188.6						
			Fu			0.62						
	Thd 5, EHE	36.5	Hsr			0.8						
			Strain Rate			2.0						
			(x10 ⁻⁸ in/in/sec)			2.0						
			P _{threshold} * (lbs)			195.1						
			Fu			0.64						
	Thd 6, EHE	36.5	Hsr			0.9						
			Strain Rate			4 7						
			(x10 ⁻⁸ in/in/sec)			1./						

									pə	kack	io-ə	r9 e	on\$į	te₹							р	əpeəıı	łL		
LRA Job No.:	Rod #:	Product Form:	Rod OD:	s/N	OD 1, FFS	OD 2, IHE	OD 3, EHE	OD 4, EHE	OD 5, IHE	OD 6, EHE	OD 7, EHE	MR 6, FFS	MR 2, IHE	MR 3, EHE	MR 4, EHE	MR 5, EHE	MR 8, EHE	Center 1, FFS	Thd 1, FFS	Thd 2, IHE	Thd 3, EHE	Thd 4, EHE	Thd 5, EHE	Thd 6, EHE	
TYL130901	1-V-S2-A2-A	1e	3"	Environment	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	
				Hardness (HRC)	37.0	36.5	37.5	35.5	37.5	37.5	37.5	35.5	32.0	35.5	35.0	33.5	35.5	31.5	36.5	36.0	36.0	36.0	36.5	36.5	
				l TS I	167	164	169	159	169	169	169	159	145	159	157	151	159	143	164	162	162	162	164	164	
				^t arget (Ibs)	94.2	65.0	64.0	41.0	50.0	35.0	30.0	87.1	1984.0	62.0	37.0	30.0	25.0	82.2	357.0	283.1	283.1	260.0	240.0	210.0	
				Pmax (Ibs)	94.2	89.0	71.2	59.5	89.5	28.0	30.0	87.1	2977.2	40.3	35.2	39.1	33.8	82.2	357.0	360.7	283.6	260.3	204.2	220.6	
				Pmax, Pth (Ibs) (94.2	87.8	54.4	45.0	87.3	20.9	26.9	87.1	2862.0	33.9	27.7	32.9	29.9	82.2	357.0	354.0	253.3	233.0	191.2	198.8	
				%FS Pth/Pmax)	100.0%	91.5%	58.8%	47.6%	93.2%	22.6%	27.8%	100.0%	102.5%	38.3%	30.5%	39.3%	34.6%	100.0%	100.0%	98.4%	71.2%	65.6%	55.8%	57.8%	
				Kmax, Klscc, Klp-EHE (ksivin)	84.9	7.77	49.9	40.4	79.1	19.2	23.6	78.9	80.9	30.2	24.1	31.0	27.3	74.1	98.5	96.9	70.1	64.6	55.0	56.9	
				DTI (vin)	0.51	0.47	0.30	0.25	0.47	0.11	0.14	0.49	0.56	0.19	0.15	0.21	0.17	0.52	0.60	09.0	0.43	0.40	0.34	0.35	
				G net (ksi)	289.7	263.3	171.0	137.6	270.4	65.7	80.0	269.1	276.2	102.5	81.5	107.0	93.2	252.3	242.7	238.8	173.1	159.2	136.9	141.5	
				Rsb, Hsrb	1.7	1.6	1.0	0.9	1.6	0.4	0.5	1.7	1.9	0.6	0.5	0.7	0.6	1.8	1.5	1.5	1.1	1.0	0.8	0.9	
				δ£/δt (10 ⁻⁸ s ⁻¹)	8500	2.2	2.3	1.5	1.8	1.3	1.0	8500	2.2	2.0	1.2	1.1	0.9	8400	0006	2.2	2.2	2.0	2.0	1.7	
				a (in)	0.2135	0.211	0.2157	0.2127	0.2150	0.2132	0.2084	0.2110	0.2148	0.2119	0.2105	0.2153	0.2115	0.2116							
				Klctod (ksiVin)	132.7							122.2						141.5							
				Step Load Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	300 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	
				P* (Ibs)															337.8	332.3	240.4	221.6	188.6	195.1	
				Fu	0.96	0.88	0.56	0.46	0.89	0.22	0.27	0.89	0.91	0.34	0.27	0.35	0.31	0.84	1.11	1.09	0.79	0.73	0.62	0.64	
				Comments																	Did Not Crack In Holiday	Did Crack In Holiday	Did Not Crack In Holiday	Did Crack In Holiday	
	LRA JOB NO.: TY130901	LRA Job No.: TY1130901 Rod #: 1-V-S2-A2-A	LRA Job No.: TY1130901 Rod #: 1-V-52-A2-A Product Form: 1e	LRA Job No.: TY133091 Rod #: 1-V-52-A2-A Product Form: 1e Rod OD: 3"	LRA Job No.: TY1130901 Rod #: 1-V-52-A2-A Product Form: 1e 0 3" Product Form: 1e 7 1e 8 00: 3" 1e 1e 1e 1e 1e 1e 1e 1es 1es 1es 1e 1es 1e 1es 1es 1es 1e 1es 1e 1es 1e 1es 1es 1es 1e 1es 1e 1es 1e 1es 1e 1es 1es 1es 1es	LRA Job No.: TV130901 Rod #: 1-V-52-A2-A Product Form: 1 a" 1-V-52-A2-A Product Form: 1 a" N Product Form: 1 a" Nax, Kiscc DT N Environment (HBC) (HS) (Ibs) (Ibs) (Ibs) (Ibs)	LRA JOB No.: TV130001 Rod #: 1-V-52-A2-A Product Form: 1e Product Form: 3" Product Form: 1e S/N Not Note: 001, F5 S/N Environment (HRC) (Hs) (Hs)	LRA JOB No.: TV130201 Rod #: 1-V-S2-A2-A ProductForm: a ProductForm: a ProductForm: a ProductForm: a ProductForm: a ProductForm: a Rod OD: a' S/N Exp(f) (bb) (bb) (bb) a a a colspan="12">a colspan="12">a colspan="12">a colspan="12">a colspan="12">a a colspan="12">a colspan="12">a colspan="12">a colspan="12">a colspan="12">a colspan="12">a colspan="12">a colspan="12">a a a a a a a a a a a a </th <th>I.RA JOB No.: TVI130901 Rod #: 1-V-52-A2-A ProductForm: 1 Brod DD: 3" ProductForm: 1 Kod DD: 3" ProductForm: 1 Rod OD: 3" ProductForm: 16 No Nax, Nisc. DN No 0" S/N Environment (HRC) (HS) (Ibs) (Ibs) (Ibs) (Ibs) (Ibs) (Ibs) IS IS</th> <th>LRA JOD No.: TV130901 Rod #: 1-V-52.A2.A ProductForm:: 1 Brod UD:: 3" ProductForm:: 1 Vo. 3" ProductForm:: 1 Brod OD:: 3" S/N Fanity March 101 Vo. 101 S/N Environment HRC (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) <</th> <th>IteM Job No.: TV130901 Rod #: 1-V-52.A2.A ProductForm:: 1 Brod UD:: 3" ProductForm:: 1 Brod DD:: 3" ProductForm:: 1 Rod OD: 3" 001; FFS Hardness UTS Plaqe Pmax, Ph %FS Kmax, Kisc, DT Ont Reb, Hs/h Riction Seb, Hs/h For Notion Pione Pione</th> <th>IFA JOD No.: Vr130:001 Rod #: J-V-S2-A2.A Product Form: IE Rod OD: 3" Product Form: IE Rod OD: 3" S/N Environment Hardness UT Max, Misc, (In) On Misc, (In) Misc, (In)</th> <th>Ited ob No.: Truisoon Rod #: 1-V-S2-A2-A Product Form: 1 Rod #: 1-V-S2-A2-A Product Form: 3 Product Form: 1 Rod OD: 3" Product Form: 1 Rod OD: 3" Voluct Form: 1 Rod OD: 3" S/N Environment (HRC) (Ibs) (Ibs) (Ibs)<</th> <th>Image: Image: Image:</th> <th>IteA Job No:: TV130501 Rod #: 1V-32.A2A ProductForm:: 1 Rod #: 1V-32.A2A ProductForm:: 1 Rod #: 1V-32.A2A ProductForm:: 1 Rod M:: 1V-32.A2A ProductForm:: 1 Rod M:: 1V-32.A2A ProductForm:: 1 Rod VD: 3 Arr 370 S/N Funtoment HHCD (B3) (B4) (M1 N (B4) (B4) (B4) (B4) (B4) 0.0 1 FF Air 37.5 169 94.2 94.2 0.31 17.1 100 137 105/2/4 0.36 0.0 1 FF Air 37.5 169 61.0 87.5 10.2 10.2 10.2 10.2 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7</th> <th>Lot Job No.: Tr130901 Rod #: 1-V-32-A2.A Rod #: 1-V-32-A2.A ProductForm: a Rod 0:: 1-V-32-A2.A ProductForm: a Rod 0:: 1-V-32-A2.A ProductForm: a SN Hardness UrS ProductForm: a SN Hardness UrS N Hardness N Hardness N Hardness Hardness Hardness<!--</th--><th>Ide Alob No.: VIL30901 Rod uff. VIL30901 VIL30901 VIL30901 Rod uff. VIL30901 Rod OL HE 35% NGC(@-1106V VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 <th colspa="</th"><th>Idea 100:10:10:10:10:10:10:10 Indea 10:10:10:10:10:10:10:10:10:10:10:10:10:1</th><th>Ida Job No.: TrueBooti TrueBooti</th><th>Involution: TV130001 TV130001 Rod off: 1-V-50.A3A Production: T <</th><th>Usy to No.: Tr13001 Molecandary is a constrained of the properties of the propertis of the properties of the propertises of the propere</th><th>Ids / Do No.: TV 13000. Rod /D: TV 1300. Rod /D: TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise No Rod /D: TV 1300. TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise Now /Rise No <!--</th--><th>Ide Johne: Trutagon Ide Johne: Trutagon Rodot: Form 3 Dimential (main) Mark <th< th=""><th>Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement <th< th=""></th<></th></th<></th></th></th></th></th>	I.RA JOB No.: TVI130901 Rod #: 1-V-52-A2-A ProductForm: 1 Brod DD: 3" ProductForm: 1 Kod DD: 3" ProductForm: 1 Rod OD: 3" ProductForm: 16 No Nax, Nisc. DN No 0" S/N Environment (HRC) (HS) (Ibs) (Ibs) (Ibs) (Ibs) (Ibs) (Ibs) IS IS	LRA JOD No.: TV130901 Rod #: 1-V-52.A2.A ProductForm:: 1 Brod UD:: 3" ProductForm:: 1 Vo. 3" ProductForm:: 1 Brod OD:: 3" S/N Fanity March 101 Vo. 101 S/N Environment HRC (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) <	IteM Job No.: TV130901 Rod #: 1-V-52.A2.A ProductForm:: 1 Brod UD:: 3" ProductForm:: 1 Brod DD:: 3" ProductForm:: 1 Rod OD: 3" 001; FFS Hardness UTS Plaqe Pmax, Ph %FS Kmax, Kisc, DT Ont Reb, Hs/h Riction Seb, Hs/h For Notion Pione Pione	IFA JOD No.: Vr130:001 Rod #: J-V-S2-A2.A Product Form: IE Rod OD: 3" Product Form: IE Rod OD: 3" S/N Environment Hardness UT Max, Misc, (In) On Misc, (In) Misc, (In)	Ited ob No.: Truisoon Rod #: 1-V-S2-A2-A Product Form: 1 Rod #: 1-V-S2-A2-A Product Form: 3 Product Form: 1 Rod OD: 3" Product Form: 1 Rod OD: 3" Voluct Form: 1 Rod OD: 3" S/N Environment (HRC) (Ibs) (Ibs) (Ibs)<	Image:	IteA Job No:: TV130501 Rod #: 1V-32.A2A ProductForm:: 1 Rod #: 1V-32.A2A ProductForm:: 1 Rod #: 1V-32.A2A ProductForm:: 1 Rod M:: 1V-32.A2A ProductForm:: 1 Rod M:: 1V-32.A2A ProductForm:: 1 Rod VD: 3 Arr 370 S/N Funtoment HHCD (B3) (B4) (M1 N (B4) (B4) (B4) (B4) (B4) 0.0 1 FF Air 37.5 169 94.2 94.2 0.31 17.1 100 137 105/2/4 0.36 0.0 1 FF Air 37.5 169 61.0 87.5 10.2 10.2 10.2 10.2 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	Lot Job No.: Tr130901 Rod #: 1-V-32-A2.A Rod #: 1-V-32-A2.A ProductForm: a Rod 0:: 1-V-32-A2.A ProductForm: a Rod 0:: 1-V-32-A2.A ProductForm: a SN Hardness UrS ProductForm: a SN Hardness UrS N Hardness N Hardness N Hardness Hardness Hardness </th <th>Ide Alob No.: VIL30901 Rod uff. VIL30901 VIL30901 VIL30901 Rod uff. VIL30901 Rod OL HE 35% NGC(@-1106V VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 <th colspa="</th"><th>Idea 100:10:10:10:10:10:10:10 Indea 10:10:10:10:10:10:10:10:10:10:10:10:10:1</th><th>Ida Job No.: TrueBooti TrueBooti</th><th>Involution: TV130001 TV130001 Rod off: 1-V-50.A3A Production: T <</th><th>Usy to No.: Tr13001 Molecandary is a constrained of the properties of the propertis of the properties of the propertises of the propere</th><th>Ids / Do No.: TV 13000. Rod /D: TV 1300. Rod /D: TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise No Rod /D: TV 1300. TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise Now /Rise No <!--</th--><th>Ide Johne: Trutagon Ide Johne: Trutagon Rodot: Form 3 Dimential (main) Mark <th< th=""><th>Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement <th< th=""></th<></th></th<></th></th></th></th>	Ide Alob No.: VIL30901 Rod uff. VIL30901 VIL30901 VIL30901 Rod uff. VIL30901 Rod OL HE 35% NGC(@-1106V VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 VIL30901 <th colspa="</th"><th>Idea 100:10:10:10:10:10:10:10 Indea 10:10:10:10:10:10:10:10:10:10:10:10:10:1</th><th>Ida Job No.: TrueBooti TrueBooti</th><th>Involution: TV130001 TV130001 Rod off: 1-V-50.A3A Production: T <</th><th>Usy to No.: Tr13001 Molecandary is a constrained of the properties of the propertis of the properties of the propertises of the propere</th><th>Ids / Do No.: TV 13000. Rod /D: TV 1300. Rod /D: TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise No Rod /D: TV 1300. TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise Now /Rise No <!--</th--><th>Ide Johne: Trutagon Ide Johne: Trutagon Rodot: Form 3 Dimential (main) Mark <th< th=""><th>Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement <th< th=""></th<></th></th<></th></th></th>	<th>Idea 100:10:10:10:10:10:10:10 Indea 10:10:10:10:10:10:10:10:10:10:10:10:10:1</th> <th>Ida Job No.: TrueBooti TrueBooti</th> <th>Involution: TV130001 TV130001 Rod off: 1-V-50.A3A Production: T <</th> <th>Usy to No.: Tr13001 Molecandary is a constrained of the properties of the propertis of the properties of the propertises of the propere</th> <th>Ids / Do No.: TV 13000. Rod /D: TV 1300. Rod /D: TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise No Rod /D: TV 1300. TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise Now /Rise No <!--</th--><th>Ide Johne: Trutagon Ide Johne: Trutagon Rodot: Form 3 Dimential (main) Mark <th< th=""><th>Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement <th< th=""></th<></th></th<></th></th>	Idea 100:10:10:10:10:10:10:10 Indea 10:10:10:10:10:10:10:10:10:10:10:10:10:1	Ida Job No.: TrueBooti TrueBooti	Involution: TV130001 TV130001 Rod off: 1-V-50.A3A Production: T <	Usy to No.: Tr13001 Molecandary is a constrained of the properties of the propertis of the properties of the propertises of the propere	Ids / Do No.: TV 13000. Rod /D: TV 1300. Rod /D: TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise No Rod /D: TV 1300. TV 1300. S/V Row /Rise Now /Rise Now /Rise Now /Rise Now /Rise No No </th <th>Ide Johne: Trutagon Ide Johne: Trutagon Rodot: Form 3 Dimential (main) Mark <th< th=""><th>Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement <th< th=""></th<></th></th<></th>	Ide Johne: Trutagon Ide Johne: Trutagon Rodot: Form 3 Dimential (main) Mark Mark <th< th=""><th>Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement <th< th=""></th<></th></th<>	Ide lot holio. Microspan="12" Ide lot holio. Microspan="12" Rotation: 3" Rotation: 3" Rotation: 3" Environment Retained Retained Retained Retained Reparement Reparement <th< th=""></th<>

LRA R&D Labs/Engineering Consultants
POB 10239, Newport Beach, CA 92658

D.6 Fatigue Pre-cracked Specimen Test Results

D.6.1 OD 1, FFS:

Figure D.6-1: Rod 1-V-S2-A2-A OD 1, Graphical FFS Results

Figure D.6-2: Fracture Face of Rod 1-V-S2-A2-A OD 1, FFS

Figure D.6-3: SEM of Rod 1-V-S2-A2-A OD 1, FFS

fpc – OL transition 250X

D.6.2 OD 2, IHE:

Overload 500X

Figure D.6-4: Rod 1-V-S2-A2-A OD 2, Graphical IHE Results

Figure D.6-5: Fracture Face of Rod 1-V-S2-A2-A OD 2, IHE

fpc – OL transition 250X

Overload 1000X

Figure D.6-7: Rod 1-V-S2-A2-A OD 3, Graphical EHE Results

Figure D.6-8: Fracture Face of Rod 1-V-S2-A2-A OD 3, EHE

Figure D.6-9: SEM of Rod 1-V-S2-A2-A OD 3, EHE

fpc – Intergranular Transition 250X

Intergranular 500X

Intergranular 250X

Overload 500X

D.6.4 OD 4, EHE:

Figure D.6-10: Rod 1-V-S2-A2-A OD 4, Graphical EHE Results

Figure D.6-11: Fracture Face of Rod 1-V-S2-A2-A OD 4, EHE
D.6.5 OD 5, IHE:

Figure D.6-12: Rod 1-V-S2-A2-A OD 5, Graphical IHE Results

Figure D.6-13: Fracture Face of Rod 1-V-S2-A2-A OD 5, IHE

D.6.6 OD 6, EHE:

Figure D.6-14: Rod 1-V-S2-A2-A OD 6, Graphical EHE Results

Figure D.6-15: Fracture Face of Rod 1-V-S2-A2-A OD 6, EHE

D.6.7 OD 7, EHE:

Figure D.6-16: Rod 1-V-S2-A2-A OD 7, Graphical EHE Results

Figure D.6-17: Fracture Face of Rod 1-V-S2-A2-A OD 7, EHE

Figure D.6-18: Rod 1-V-S2-A2-A MR 6, Graphical FFS Results

Figure D.6-19: Fracture Face of Rod 1-V-S2-A2-A MR 6, FFS

D.6.9 MR 2, IHE:

Figure D.6-20: Rod 1-V-S2-A2-A MR 2, Graphical IHE Results

Figure D.6-21: Fracture Face of Rod 1-V-S2-A2-A MR 2, IHE

D.6.10 MR 3, EHE:

Figure D.6-22: Rod 1-V-S2-A2-A MR 3, Graphical EHE Results

Figure D.6-23: Fracture Face of Rod 1-V-S2-A2-A MR 3, EHE

fpc – Intergranular Transition 250X

Intergranular 1000X

Intergranular 500X

Overload and Cleavage 250X

D.6.11 MR 4, EHE:

Figure D.6-25: Rod 1-V-S2-A2-A MR 4, Graphical EHE Results

Figure D.6-26: Fracture Face of Rod 1-V-S2-A2-A MR 4, EHE

Figure D.6-27: SEM of Rod 1-V-S2-A2-A MR 4, EHE

fpc – Intergranular Transition 250X

Intergranular 1000X

Intergranular 500X

Overload and Cleavage 250X

D.6.12 MR 5, EHE:

Figure D.6-28: Rod 1-V-S2-A2-A MR 5, Graphical EHE Results

Figure D.6-29: Fracture Face of Rod 1-V-S2-A2-A MR 5, EHE

Figure D.6-30: Rod 1-V-S2-A2-A MR 8, Graphical EHE Results

Figure D.6-31: Fracture Face of Rod 1-V-S2-A2-A MR 8, EHE

D.6.14 Center 1, FFS:

Figure D.6-32: Rod 1-V-S2-A2-A Center 1, Graphical FFS Results

Figure D.6-33: Fracture Face of Rod 1-V-S2-A2-A Center 1, FFS

Figure D.6-34: SEM of Rod 1-V-S2-A2-A Center 1, FFS

fpc – OL transition 50X

Overload 500X

D.7 Threaded Specimen Test Results

D.7.1 Thd 1, FFS:

Figure D.7-1: Rod 1-V-S2-A2-A Thd 1, Graphical FFS Results

Figure D.7-2: Rod 1-V-S2-A2-A Thd 1 FFS Fracture Face

Figure D.7-3: SEM of Rod 1-V-S2-A2-A Thd 1, FFS

Thread Root 50X

2) Ductile Overload 1000X

1) Ductile Overload 1000X

Impact, Cleavage 1000X

Figure D.7-4: Rod 1-V-S2-A2-A Thd 2, Graphical IHE Results

Figure D.7-5: Rod 1-V-S2-A2-A Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

Figure D.7-6: Rod 1-V-S2-A2-A Thd 3, Graphical EHE Results

Figure D.7-7: Rod 1-V-S2-A2-A Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

2) Mixed: Brittle Cleavage, Intergranular 1000X

Figure D.7-8: SEM of Rod 1-V-S2-A2-A Thd 3, EHE

1) Mixed: Brittle Cleavage, Intergranular 250X

3) Ductile Overload 1000X

Figure D.7-9: Rod 1-V-S2-A2-A Thd 4, Graphical EHE Results

Figure D.7-10: Rod 1-V-S2-A2-A Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Thread Root 50X

2) Mixed: Ductile Overload, Intergranular 500X

1) Mixed: Ductile Overload, Intergranular 250X

3) Mixed: Ductile Overload, Intergranular 500X

Figure D.7-12: Rod 1-V-S2-A2-A Thd 5, Graphical EHE Results

Figure D.7-13: Rod 1-V-S2-A2-A Thd 5 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure D.7-14: Rod 1-V-S2-A2-A Thd 6, Graphical EHE Results

Figure D.7-15: Rod 1-V-S2-A2-A Thd 6 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix E: Rod 1-V-S2-A2-D

E.1 Description of Sample

Rod 1-V-S2-A2-D was located at the bottom of the Shear Key Anchor Bolts on Pier E2 (S1/S2) and was from the same group of material that was tested in Test Rigs 12 and 13 in Test IV. The D at the end of the serial number identifies that this section of the 2008 Rod 1-V-S2-A2 was located near the fracture end (dead end) in March 2013. It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 3 inches in diameter with machined threads. The segment from this section of the rod provided to LRA is shown in **Figure E.1-1**.

Figure E.1-1: Pier E2 Bearing Bolt (Top Housing), Rod 1-V-S2-A2-D

E.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 1-V-S2-A2-D and can be seen versus time in **Figure E.2-1**. The final OCP recorded for Rod 1-V-S2-A2-D was Vsce=-1.073 V.

Figure E.2-1: Open Circuit Potential for Rod 1-V-S2-A2-D

E.3 Hardness

The hardness data and profile for sample 1-V-S2-A2-D are shown in **Table E.3-1** and **Figure E.3-1**. The center specimen that was machined to incorrect dimensions and will not be included in the hardness data.

C /N	Hardness	Average			
5/10	(HRC)	(HRC)			
MR 1, FFS	32.0				
MR 3, EHE	34.0	33.0			
MR 4, EHE	33.0				
OD 1, FFS	36.0				
OD 3, EHE	35.0				
OD 4, EHE	36.0				
OD 2, IHE	36.0				
OD 5, IHE	36.0				
OD 6, EHE	35.0	35.8			
Thd 1, FFS	36.0				
Thd 4, EHE	35.5				
Thd 2, IHE	36.0				
Thd 6, EHE	36.0				
Thd 7, EHE	36.0				

Table E.3-1: Hardness Data of Rod 1-V-S2-A2-D Specimen

Figure E.3-1: Hardness Profile of Rod 1-V-S2-A2-D

E.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

E.4.1 Fatigue Pre-crack Results:

Test V ASTM F1624 Bolt Specimen Results													
Threaded Rod ID#1-V-S2-A2-D													
LRA Job No.:	TYL130901	- Structural Component: Shear Key Anchor Bolts-Bottom (S1/S2)											
Rod#:	1-V-S2-A2-D												
Product Form:	1 e	Comments: Machined Threads; 2008 Near Fracture (Dead End)											
Rod OD:	3"	Same Group of Material as Test Rig #12 and #13 in Test IV											
	Sample #/ID	HRC	HRC K-FFS K-IHE H										
			K _{max}	84.3									
			DTI _{th}	0.52									
	OD 1, FFS	36.0	Fu	0.95									
			Strain Rate										
			(v10 ⁻⁸ in/in/sec)	8500									
			(x10 m/m/sec)		77.0								
			P threshold		0.49								
	OD 2, IHE	36.0	DII _{th}		0.48								
			Fu		0.87								
			Strain Rate		2.3								
Ψ			(x10° in/in/sec)										
cke			K _{threshold}			45.4							
e e		35.0	DTI _{th}			0.29							
Pre	OD 3, EHE		Fu			0.51							
ne			Strain Rate										
atig			(x10 ⁸ in/in/sec)			2.2							
æ			K _{threshold}			29.3							
			DTI _{th}			0.18							
	OD 4. EHE	36.0	Fu			0.33							
			Strain Rate										
			(v10 ⁻⁸ in /in /co c)			2.0							
			(xto m/m/sec)										
			Kthreshold		78.7								
			DTI _{th}		0.49								
	OD 5, IHE	36.0	Fu		0.89								
			Strain Rate		1.0								
			(x10 ⁻⁸ in/in/sec)		1.8								

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 1-V-S2-A2-D												
LRA Job No.: TYL130901 Structural Component: Shear Key Anchor Bolts-Bottom (S1/S2)												
Rod#:	1-V-S2-A2-D		(01/02)									
Product Form:	1e	Comments: Machined Threads; 2008 Near Fracture (Dead Enc										
Rod OD:	3"	Same Group of Material as Test Rig #12 and #13 in Test IV										
	Sample #/ID HRC K-FFS K-IHE											
			K _{threshold}			29.1						
			DTI _{th}			0.19						
	OD 6, EHE	35.0	Fu			0.33						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.8						
	MR 1, FFS		K _{max}	78.0								
		32.0	DTI _{th}	0.54								
ed			Fu	0.88								
ack			Strain Rate									
e-ci			(x10 ⁻⁸ in/in/sec)	8500								
e Pr			K _{threshold}			29.1						
igu			DTI _{th}			0.19						
Fat	MR 3, EHE	34.0	Fu			0.33						
			Strain Rate			1.8						
			(x10 ⁻⁸ in/in/sec)									
			K _{threshold}			29.6						
			DTI _{th}			0.20						
	MR 4, EHE	33.0	Fu			0.33						
		Į	Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.0						

E.4.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results													
Threaded Rod ID # 1-V-S2-A2-D													
LRA Job No.:	LRA Job No.: TYL130901 Structural Component: Shear Key Anchor Bolts-Bottom (S1/S												
Rod#:	1-V-S2-A2-D	511 (51/52)											
Product Form:	1e		Comments: Machined Threads; 2008 Near Fracture (Dea										
Rod OD:	3"		Same Group of Material as Test Rig #12 and #13 in Test IV										
	Sample #/ID	HRC		P-EHE									
			Pmax* (lbs)	326.2									
			Fu	1.07									
	Thd 1, FFS	36.0	Rsb	1.5									
			Strain Rate	1200									
			(x10 ⁻⁸ in/in/sec)	4300									
			P _{threshold} * (lbs)		318.6								
			Fu		1.05								
	Thd 2, IHE	36.0	Hsr		1.4								
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)		2.2								
	Thd 4, EHE		P _{threshold} * (Ibs)			263.4							
ed			Fu			0.87							
ead		35.5	Hsr			1.2							
Thr			Strain Rate										
			(x10 ⁻⁸ in/in/sec)			2.2							
			P _{threshold} * (lbs)			178.0							
			Fu			0.59							
	Thd 6, EHE	36.0	Hsr			0.8							
	-		Strain Rate										
			(x10 ⁻⁸ in/in/sec)			0.8							
			P _{threshold} * (lbs)			194.1							
			Fu			0.64							
	Thd 7, EHE	36.0	Hsr			0.9							
			Strain Rate			0.0							
			(x10 ⁻⁸ in/in/sec)			0.8							

E.4.3 Summary Table:

				Comments												Cracked In Holiday	Not Crack In Holiday ged to 10/5/2,8 After 2 hour Steps	Not Crack in Holiday (2,8 Ran for 24 Hours -1.068 V sce Due to Power Outage
				_	5	12	1	3	6	3	88	3	3	2	5	2	Did I Chan	Did f 10/5/ id at-
				<u> </u>	0.0	<u>.0</u>	0.0	0.9	3 ^{.0}	0.9	0.8	0.3	0.3	.2 1.0	.6 1.0	.4 0.8	0.0	.1 0.6
				åĝ	-									326	318	263	178	194
				Step Load Profile	50 lbs/mir	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/mir	10/5/2,4	10/5/2,4	0.4 in/min	10/5/2,4	10/5/2,4	10/5/2,8	10/5/2,8
				Klctod (ksiVin)	121.0						121.9							
				a (ii	0.2121	0.2159	0.2114	0.2193	0.2119	0.2158	0.2112	0.2175	0.2224	N/A	N/A	N/A	N/A	N/A
				δ£/δt (10 ⁸ s ⁻¹)	8500	2.3	2.2	2.0	1.8	1.8	8500	1.8	1.0	4300	2.2	2.2	0.8	0.8
				Rsb, Hsrb	1.8	1.6	1.0	0.6	1.7	0.6	1.8	0.7	0.7	1.5	1.4	1.2	0.8	6.0
				σ net (ksi)	288.7	264.7	155.4	101.9	267.2	100.3	266.5	100.4	103.6	236.1	230.3	190.5	129.1	141.0
				E (ii)	0.52	0.48	0.29	0.18	0.49	0.19	0.54	0.19	0.20	0.59	0.57	0.48	0.32	0.35
				Kmax, Klscc, Klp-EHE (ksivin)	84.3	77.0	45.4	29.3	7.87	29.1	78.0	1.92	29.62	95.1	92.9	76.8	51.9	56.6
				%FS (Pth/Pmax)	100.0%	91.3%	53.9%	34.8%	93.4%	34.5%	100.0%	37.3%	37.9%	100.0%	97.7%	80.8%	54.6%	59.5%
				Pmax, Pth (Ibs)	92.4	83.1	49.5	30.2	87.5	31.2	86.1	30.7	29.9	343.0	336.1	278.1	178.5	194.1
				Pmax (Ibs)	92.4	86.6	62.1	35.8	89.2	34.7	86.1	42.1	38.8	343.0	338.1	294.0	189.0	203.5
				Ptarget (Ibs)	92.4	62.0	62.0	55.0	52.0	33.0	86.1	56.0	25.0	343.0	280.0	280.0	200.0	175.0
				UTS (ksi)	162	162	157	162	162	157	145	153	149	162	162	159	162	162
				Hardness (HRC)	36.0	36.0	35.0	36.0	36.0	35.0	32.0	34.0	33.0	36.0	36.0	35.5	36.0	36.0
TYL130901	1-V-S2-A2-D	1e	3"	Environment	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
LRA Job No.:	Rod #:	Product Form:	Rod OD:	s/N	OD 1, FFS	OD 2, IHE	OD 3, EHE	OD 4, EHE	OD 5, IHE	OD 6, EHE	MR 1, FFS	MR 3, EHE	MR 4, EHE	Thd 1, FFS	Thd 2, IHE	Thd 4, EHE	Thd 6, EHE	Thd 7, EHE
					Fatigue Pre-cracked												Threaded	

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 1-V-S2-A2-D RSL^{III} (B) 4-pt Bend Test

E.5 Fatigue Pre-cracked Specimen Test Results

E.5.1 OD 1, FFS:

Figure E.5-1: Rod 1-V-S2-A2-D OD 1, Graphical FFS Results

Figure E.5-2: Fracture Face of Rod 1-V-S2-A2-D OD 1, FFS

E.5.2 OD 2, IHE:

Figure E.5-3: Rod 1-V-S2-A2-D OD 2, Graphical IHE Results

Figure E.5-4: Fracture Face of Rod 1-V-S2-A2-D OD 2, IHE

OD 3, EHE:

Figure E.5-5: Rod 1-V-S2-A2-D OD 3, Graphical EHE Results

Figure E.5-6: Fracture Face of Rod 1-V-S2-A2-D OD 3, EHE

E.5.3 OD 4, EHE:

Figure E.5-7: Rod 1-V-S2-A2-D OD 4, Graphical EHE Results

Figure E.5-8: Fracture Face of Rod 1-V-S2-A2-D OD 4, EHE

E.5.4 OD 5, IHE:

Figure E.5-9: Rod 1-V-S2-A2-D OD 5, Graphical IHE Results

Figure E.5-10: Fracture Face of Rod 1-V-S2-A2-D OD 5, IHE

E.5.5 OD 6, EHE:

Figure E.5-11: Rod 1-V-S2-A2-D OD 6, Graphical EHE Results

Figure E.5-12: Fracture Face of Rod 1-V-S2-A2-D OD 6, EHE

E.5.6 MR 1, FFS:

Figure E.5-13: Rod 1-V-S2-A2-D MR 1, Graphical FFS Results

Figure E.5-14: Fracture Face of Rod 1-V-S2-A2-D MR 1, FFS

E.5.7 MR 3, EHE:

Figure E.5-15: Rod 1-V-S2-A2-D MR 3, Graphical EHE Results

Figure E.5-16: Fracture Face of Rod 1-V-S2-A2-D MR 3, EHE
E.5.8 MR 4, EHE:

Figure E.5-17: Rod 1-V-S2-A2-D MR 4, Graphical EHE Results

Figure E.5-18: Fracture Face of Rod 1-V-S2-A2-D MR 4, EHE

E.6 Threaded Specimen Test Results

E.6.1 Thd 1, FFS:

Figure E.6-1: Rod 1-V-S2-A2-D Thd 1, Graphical FFS Results

Figure E.6-2: Rod 1-V-S2-A2-A Thd 1 FFS Fracture Face

E.6.2 Thd 2, IHE:

Figure E.6-3: Rod 1-V-S2-A2-D Thd 2, Graphical IHE Results

Figure E.6-4: Rod 1-V-S2-A2-A Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

E.6.3 Thd 4, EHE:

Figure E.6-5: Rod 1-V-S2-A2-D Thd 4, Graphical EHE Results

Figure E.6-6: Rod 1-V-S2-A2-A Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Thread Root 25X

2) Intergranular 1000X

Figure E.6-7: SEM of Rod 1-V-S2-A2-D Thd 4, EHE

1) Intergranular 500X

3) Mixed: Ductile Overload, Intergranular 1000X

E.6.4 Thd 6, EHE:

Figure E.6-8: Rod 1-V-S2-A2-D Thd 6, Graphical EHE Results

Figure E.6-9: Rod 1-V-S2-A2-A Thd 6 Thread Root from Side and Normal Views Post EHE Test

E.6.5 Thd 7, EHE:

Figure E.6-10: Rod 1-V-S2-A2-D Thd 7, Graphical EHE Results

Figure E.6-11: Rod 1-V-S2-A2-A Thd 7 a) EHE Fracture Face

Appendix F: Rod 3-V-9

F.1 Description of Sample

Rod 3-V-9 was a Shear Key Anchor Bolt located at the top of the Pier E2 (S1/S2) from a similar heat of material as was tested in Test Rigs 1, 2, 3 and 4 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 3 inches in diameter with machined threads. The segment from one of four spares from this rod provided to LRA is shown in **Figure F.1-1**.

Figure F.1-1: Pier E2 Shear Key Anchor Bolt (Top), Rod 3-V-9

F.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 3-V-9 can be seen in **Figure F.2-1** where the black portion of the Shadowgraph represents the rod material. As can be seen from **Figure F.2-1**, these machined thread roots show non-uniformity and exhibit a sharp radius.

Figure F.2-1: Thread Comparison of Three Threads of Rod 3-V-9

F.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 3-V-9 and can be seen versus time in **Figure F**.3-1. The final OCP recorded for Rod 3-V-9 was Vsce=-1.013 V.

Figure F.3-1: Open Circuit Potential for Rod 3-V-9

F.4 Hardness

The hardness data and profile for sample 3-V-9 are shown in **Table F.4-1** and **Figure F.4-1**.

C/N	Hardness	Average
5/11	(HRC)	(HRC)
Center 1, FFS	30.5	30.5
MR 1, FFS	32.5	
MR 2, IHE	33.5	22.1
MR 6, EHE	33.0	55.I
MR 7, EHE	33.5	
OD 3, IHE	36.0	
OD 6, IHE	36.0	
OD 9, EHE	35.5	
OD 11, FFS	36.0	
OD 13, EHE	35.5	35.6
Thd 15, FFS	35.5	
Thd 2, EHE	35.5	
Thd 3, IHE	35.0	
Thd 4, EHE	35.0	

Table F.4-1: Hardness Data of Rod 3-V-9 Specimen

Figure F.4-1: Hardness Profile of Rod 3-V-9

F.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

F.5.1 Fatigue Pre-crack Results:

#NAME?												
Threaded Rod ID # 3-V-9												
LRA Job No.:	TYL130901		Structural Component: Shear Key Anchor Bolts-Top (S1/S2)									
Rod#:	3-V-9		Structural component. Shear Key Anchor Bolts-10p (51/52)									
Product Form:	1e		Comr	ments: 2010 Mach	nined Threads							
Rod OD:	3"		Same Heat as ID 2 Rods (Test Rigs #1 through #4 Test IV)									
	Sample #/ID	HRC	HRC K-FFS K-IHE									
			K _{max}	86.4								
			DTI _{th}	0.53								
	OD 11, FFS	36.0	Fu	0.98								
			Strain Rate	8000								
			(x10 ⁻⁸ in/in/sec)	8900								
			K _{threshold}		86.2							
			DTI _{th}		0.53							
ked	OD 3, IHE	36.0	Fu		0.97							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		1.5							
	OD 6. IHE		K _{threshold}		95.4							
crac		36.0			0.59							
re-			Fu		1.08							
ue F	-		Strain Rate		2.00							
atig			(x10 ⁻⁸ in/in/sec)		1.7							
Ľ			Kthrashald			28.2						
						0.18						
	OD 9. EHE	35.5	Eu			0.10						
			Strain Rate			0.52						
			$(x10^{-8} in/in/sec)$			1.8						
			K			30.0						
						0.10						
		35 5	Eu			0.19						
	00 13, LIIL		FU Strain Pata			0.54						
			$\sqrt{10^{-8}}$ in $\sqrt{10^{-8}}$			1.2						
			(x10° in/in/sec)									

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 3-V-9												
LRA Job No.:	TYL130901		Structural Compo	nont: Shaar Kay	Anchor Bolts-Tor	(\$1/\$2)						
Rod#:	3-V-9	Structural component. Shear Ney Anchor Bolts-Top (31/32)										
Product Form:	1e	Comments: 2010 Machined Threads										
Rod OD:	3"		Same Heat as I	0 2 Rods (Test Rig	s #1 through #4 T	est IV)						
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE						
			K _{max}	81.6								
			DTI _{th}	0.56								
	MR 1, FFS	32.5	Fu	0.92								
			Strain Rate	8200								
			(x10 ⁻⁸ in/in/sec)	8500								
			K _{threshold}		95.8							
			DTI _{th}		0.64							
	MR 2, IHE	33.5	Fu		1.08							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		2.5							
ked	MR 6, EHE		Kthreshold			38.0						
crac			DTL			0.26						
re-(33.0	Eu			0.43						
ar P			Strain Rate			0.10						
atigu			(x10 ⁻⁸ in/in/sec)			1.7						
E			Katara kala			35.1						
			DTI			0.23						
	MR 7. EHE	33.5	Fu			0.40						
	,		Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.2						
			K _{max}	80.9								
			DTI	0.58								
	Center 1, FFS	30.5	Fu	0.91								
	-		Strain Rate	0.01								
			(x10 ⁻⁸ in/in/sec)	(x10 ⁻⁸ in/in/sec) 9000								
		1										

F.5.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results													
Threaded Rod ID # 3-V-9													
LRA Job No.:	TYL130901	Structural Component: Shear Key Anchor Bolts-Top (\$1/\$2)											
Rod#:	3-V-9		Structural Compo	Sheht. Shear Key		(31/32)							
Product Form:	1e		Comments: 2010 Machined Threads										
Rod OD:	3"		Same Heat as ID 2 Rods (Test Rigs #1 through #4 Test IV)										
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE							
			Pmax* (lbs)	342.6									
			Fu	1.13									
	Thd 15, FFS	35.5	Rsb	1.5									
			Strain Rate	2500									
			(x10 ⁻⁸ in/in/sec)	3500									
	Thd 3, IHE		P _{threshold} * (lbs)		345.7								
		35.0	Fu		1.14								
			Hsr		1.6								
eq			Strain Rate		2.1								
ead			(x10 ⁻⁸ in/in/sec)		2.1								
Thr			P _{threshold} * (lbs)			216.1							
_			Fu			0.71							
	Thd 2, EHE	35.5	Hsr			1.0							
			Strain Rate			10							
			(x10 ⁻⁸ in/in/sec)			1.8							
			P _{threshold} * (lbs)			213.7							
			Fu			0.70							
	Thd 4, EHE	35.0	Hsr			1.0							
			Strain Rate			1 2							
			(x10 ⁻⁸ in/in/sec)			1.2							

F.5.3 Summary Table:

	Pr			0				pə	rack		- L	ənß	ite 1		-	-	Ce	L	pə	Тһгеаd	
Rod #:	oduct Form:	Rod OD:	s/N	DD 11, FFS	OD 3, IHE	OD 6, IHE	OD 9 FHF	00 3, 11 11		2012 CHC			MR 1, FFS	MR 2, IHE	MR 6, EHE	MR 7, EHE	anter 1, FFS	hd 15, FFS	Thd 2, EHE	Thd 3, IHE	Thd 4, EHE
3-V-9	1e	3"	Environment	Air	Air	Air	3 5% NaCl @ -1 106/			2 602 Naci @ 11067	2.2% NACL @ - 1.100V		Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V
			Hardness (HRC)	36.0	36.0	36.0	35 E			75 5	c.cc		32.5	33.5	33.0	33.5	30.5	35.5	35.5	35.0	35.0
			UTS (ksi)	162	162	162	159			150	ъст Г		147	151	149	151	139	159	159	157	157
			Ptarget (Ibs)	95.7	2100.0	1500.0	62.0	00		0.46	0.40		91.4	2240.0	45.0	35.0	84.1	352.0	250.0	250.0	175.0
			Pmax (Ibs)	95.7	2853.0	3193.5	37 7	4.10		7 7	1.00		91.4	3383.1	49.6	45.5	84.1	352.0	325.3	359.7	335.1
			Pmax, Pth (Ibs)	95.7	2837.0	3119.2	30.9			<i>c cc</i>	7.70		91.4	3383.1	40.4	38.4	84.1	352.0	236.2	359.7	243.9
			%FS (Pth/Pmax)	100.0%	%8 .66	110.4%	37.6%	20.00		70L VC	04.1%		100.0%	117.4%	46.6%	43.0%	100.0%	100.0%	63.1%	100.9%	62.4%
			Kmax, Klscc, Klp-EHE (ksivin)	86.4	86.2	95.4	78.7	±0.5		0.05	0.00		81.6	95.8	38.0	35.1	80.9	6.66	63.0	100.8	62.3
			DTI (Vin)	0.53	0.53	0.59	0.18	01.0		010	лтл О.Тл		0.56	0.64	0.26	0.23	0.58	0.63	0.40	0.64	0.40
			G net (ksi)	294.4	300.8	333.6	96 E			1 001	TCOT		277.6	327.3	131.4	119.9	281.3	245.9	152.9	247.8	150.1
			tsb, Hsrb	1.8	1.9	2.1	0.6	0		90	0.0		1.9	2.2	0.9	0.8	2.0	1.5	1.0	1.6	1.0
			δ£/δt (10 ⁻⁸ s ⁻¹)	0068	1.5	1.7	18			, ,	7.7		8300	2.5	1.7	1.2	0006	3500	1.8	2.1	1.2
			a (in)	0.2112	0.2198	0.2230	0 2143	2112.0		C71C 0	7/17.0		0.2133	0.2130	0.2176	0.2136	0.2224	×	×	×	×
			Klctod (ksiVin)	123.7									144.6				140.4	×	×	×	×
			Step Load Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2 4			10/5/2/11	+'7/c/nt		50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	0.4 in/min	10/5/2,4	10/5/2,4	10/5/2,4
			P* (lbs)															342.6	216.1	345.7	213.7
			Fu	0.98	0.97	1.08	0 37	40.0		10.0	40.0		0.92	1.08	0.43	0.40	0.91	1.13	0.71	1.14	0.70
			Comments	Had Noisy Data	Tensile Frame	Collection Error	Threshold in two	hour steps.	Corrosion Began	After Specimen	Began Cracking.	Good Data		Tensile Frame					Water Ran Low Cracked in Holiday		Did Not Crack in Holiday.

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 3-V-9 RSL¹⁴ (B) 4-pt Bend Test

TYL130901

LRA Job No.:

F.6 Fatigue Pre-cracked Specimen Test Results

F.6.1 OD 11, FFS:

Figure F.6-1: Rod 3-V-9 OD 11, Graphical FFS Results

Figure F.6-2: Fracture Face of Rod 3-V-9 OD 11, FFS

F.6.2 OD 3, IHE:

Figure F.6-3: Rod 3-V-9 OD 3, Graphical IHE Results

Figure F.6-4: Fracture Face of Rod 3-V-9 OD 3, IHE

F.6.3 OD 6, IHE:

Figure F.6-5: Rod 3-V-9 OD 6, Graphical IHE Results

Figure F.6-6: Fracture Face of Rod 3-V-9 OD 6, IHE

F.6.4 OD 9, EHE:

Figure F.6-7: Rod 3-V-9 OD 9, Graphical EHE Results

Figure F.6-8: Fracture Face of Rod 3-V-9 OD 9, EHE

F.6.5 OD 13, EHE:

Figure F.6-9: Rod 3-V-9 OD 13, Graphical EHE Results

Figure F.6-10: Fracture Face of Rod 3-V-9 OD 13, EHE

F.6.6 MR 1, FFS:

Figure F.6-11: Rod 3-V-9 MR 1, Graphical FFS Results

Figure F.6-12: Fracture Face of Rod 3-V-9 MR 1, FFS

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Figure F.6-13: SEM of Rod 3-V-9 MR 1, FFS

fpc – OL transition 250X

Overload 1000X

F.6.7 MR 2, IHE:

Figure F.6-14: Rod 3-V-9 MR 2, Graphical IHE Results

Figure F.6-15: Fracture Face of Rod 3-V-9 MR 2, IHE

F.6.8 MR 6, EHE:

Figure F.6-16: Rod 3-V-9 MR 6, Graphical EHE Results

Figure F.6-17: Fracture Face of Rod 3-V-9 MR 6, EHE

F.6.9 MR 7, EHE:

Figure F.6-18: Rod 3-V-9 MR 7, Graphical EHE Results

Figure F.6-19: Fracture Face of Rod 3-V-9 MR 7, EHE

F.6.10 Center 1, FFS:

Figure F.6-20: Rod 3-V-9 Center 1, FFS Graphical RSL FFS Results

Figure F.6-21: Fracture Face of Rod 3-V-9 Center 1, FFS

F.7 Threaded Specimen Test Results

F.7.1 Thd 15, FFS:

Figure F.7-1: Rod 3-V-9 Thd 15, Graphical FFS Results

Figure F.7-2: Rod 3-V-9 Thd 15 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Figure F.7-3: Rod 3-V-9 Thd 3, Graphical IHE Results

Figure F.7-4: Rod 3-V-9 Thd 3 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

F.7.3 Thd 2, EHE:

Figure F.7-5: Rod 3-V-9 Thd 2, Graphical EHE Results

Figure F.7-6: Rod 3-V-9 Thd 2 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Figure F.7-7: Rod 3-V-9 Thd 4, Graphical EHE Results

Figure F.7-8: Rod 3-V-9 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Page 166

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Thread Root 50X

2) Mixed: Ductile Overload, Intergranular 1000X

1) Ductile Overload 250X

Impact, Ductile Overload 1000X

Appendix G: Rod 3-V-10

G.1 Description of Sample

Rod 3-V-10 was a spare Shear Key Anchor Bolt at the top of Pier E2 (S1/S2) and is from a similar heat of material as was tested in Test Rigs 1, 2, 3 and 4 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 3 inches in diameter with machined threads. The segment from one of four spares from this rod provided to LRA is shown in **Figure G.1-1**.

Figure G.1-1: Pier E2 Shear Key Anchor Bolt (Top), Rod 3-V-10

G.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 3-V-10 can be seen in **Figure G.2-1** where the black portion of the Shadowgraph represents the rod material. As can be seen from **Figure G.2-1**, these machined thread roots are non-uniform and exhibit a sharp radius.

Figure G.2-1: Thread Comparison of Three Threads of Rod 3-V-10

G.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 3-V-10 and can be seen versus time in **Figure G**.3-1. The final OCP recorded for Rod 3-V-10 was Vsce=-1.052 V.

Figure G.3-1: Open Circuit Potential for Rod 3-V-10

G.4 Hardness

The hardness data and profile for sample 3-V-10 are shown in **Table G.4-1** and **Figure G.4-1**.

S /N	Hardness	Average	
3/11	(HRC)	(HRC)	
Center 2, FFS	31.5	31.5	
MR 7, FFS	31.5		
MR 2, IHE	33.0		
MR 3, EHE	33.0	32.7	
MR 4, EHE	33.0		
MR 8, EHE	33.0		
OD 1, FFS	36.0		
OD 2, IHE	35.5		
OD 3, EHE	35.5		
OD 4, EHE	36.0	25.0	
Thd 1, FFS	36.0	33.9	
Thd 2, IHE	36.0		
Thd 3, IHE	36.0		
Thd 4, EHE	36.0		

Table G.4-1: Hardness Data of Rod 3-V-10 Specimen

G.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

G.5.1 Fatigue Pre-crack Results

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 3-V-10												
LRA Job No.:	TYL130901	TYL130901 Structural Component: Shear Key Anchor Bolts-Top										
Rod#:	3-V-10		Structural component. Shear Key Anchor Bolts-Top									
Product Form:	1e		Comments: 2010 Machined Threads									
Rod OD:	3"		Same Heat as I	D 2 Rods (Test Rig	gs #1 through #4 1	Test IV)						
	Sample #/ID	HRC	HRC K-FFS K-IHE									
			K _{max}	85.3								
			DTI _{th}	0.53								
	OD 1, FFS	36.0	Fu	0.96								
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)	7900								
			Kabarahala		85.2							
					0.52							
	OD 2, IHE	25 5	DTI _{th}		0.55							
		55.5	FU Strain Data		0.96							
			Strain Rate		2.1							
ked			(x10° in/in/sec)									
rack			K _{threshold}			26.5						
с- -			DTI _{th}			0.16						
e Pr	OD 3, EHE	36.0	Fu			0.30						
igu			Strain Rate			4.0						
Fat			(x10 ^{-°} in/in/sec)									
			K _{threshold}			29.4						
			DTI _{th}			0.18						
	OD 4, EHE	36.0	Fu			0.33						
			Strain Rate			0.9						
			(x10 ⁻⁸ in/in/sec)			0.9						
			K _{max}	79.4								
			DTI _{th}	0.56								
	MR 7, FFS	31.5	Fu	0.90								
			Strain Rate	0000								
			(x10 ⁻⁸ in/in/sec)	0000								

Test V ASTM F1624 Bolt Specimen Results													
Threaded Rod ID # 3-V-10													
LRA Job No.:	TYL130901		Structural Co	mnonent: Shear	Key Anchor Bolts	Top							
Rod#:	3-V-10	Structural component. Shear Key Anchor Bons-Top											
Product Form:	1e	Comments: 2010 Machined Threads											
Rod OD:	3"		Same Heat as ID 2 Rods (Test Rigs #1 through #4 Test IV)										
	Sample #/ID	HRC	HRC K-FFS K-IHE										
			K _{threshold}		92.1								
			DTI _{th}		0.62								
	MR 2, IHE	33.0	Fu		1.04								
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)		2.2								
			Kthreshold			52.1							
			DTI _{th}			0.35							
	MR 3, EHE	33.0	Fu			0.59							
			Strain Rate			0.00							
			(x10 ⁻⁸ in/in/sec)			2.0							
ked	MR 4. EHE		Kthreshold			35.0							
crac			DTI _{+b}			0.24							
re-c		33.0	Fu			0.40							
le P	,		Strain Rate			01.0							
tigu			$(x10^{-8} in/in/sec)$			1.5							
Fa			(X10 · III) III) 500)			36.4							
			Nthreshold			50.4							
		22.0	DII _{th}			0.24							
	IVIN 0, EFE	55.0	Fu			0.41							
			Strain Rate			1.3							
			(x10° in/in/sec)										
			K _{max}	77.2									
			DTI _{th}	0.54									
	Center 2, FFS	31.5	Fu	0.87									
			Strain Rate	8500									
			(x10 ⁻⁸ in/in/sec)	0500									

G.5.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results												
Rod#:	3-V-10		Structural Component: Shear Key Anchor Bolts-Top									
Product Form:	1e		Comm	nents: 2010 Mach	ined Threads							
Rod OD:	3"		Same Heat as ID 2 Rods (Test Rigs #1 through #4 Test IV)									
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE						
			Pmax* (lbs)	339.2								
			Fu	1.12								
	Thd 1, FFS	36.0	Rsb	1.5								
			Strain Rate	F 400								
			(x10 ⁻⁸ in/in/sec)	5400								
	Thd 2, IHE		P _{threshold} * (Ibs)		339.5							
			Fu		1.12							
		36.0	Hsr		1.5							
σ			Strain Rate		4 7							
ade			(x10 ⁻⁸ in/in/sec)		1.7							
hre			P _{threshold} * (lbs)			227.4						
F			Fu			0.75						
	Thd 3, EHE	35.0	Hsr			1.0						
			Strain Rate			2.0						
			(x10 ⁻⁸ in/in/sec)			2.0						
			P _{threshold} * (Ibs)			235.3						
			Fu			0.78						
	Thd 4, EHE	36.0	Hsr			1.0						
			Strain Rate			1.4						
			(x10 ⁻⁸ in/in/sec)			1.4						
Caltrans

333 Burma Road, Oakland, CA 94607

G.5.4 Summary Table

						Fatigue Pre-cracked										рәреәлүլ				
LRA Job No.: Rod #:	HOU #:	Product Form:	Rod OD:	S/N		OD 1, FFS	OD 2, IHE	OD 3, EHE	OD 4, EHE	MR 7, FFS	MR 2, IHE	MR 3, EHE	MR 4, EHE	MR 8, EHE	Center 2, FFS	Thd 1, FFS	Thd 2, IHE	Thd 3, EHE	Thd 4, EHE	
TYL130901 3-V-10	NT-A-6	1e	3"	Environment		Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	
				Hardness	(HRC)	36.0	35.5	36.0	36.0	31.5	33.0	33.0	33.0	33.0	31.5	36.0	36.0	35.0	36.0	
				UTS	(ksi)	162	159	162	162	143	149	149	149	149	143	162	162	157	162	
				Ptanget	(Ibs)	99.4	2154.0	67.0	24.0	84.7	1910.0	59.7	45.0	35.0	84.9	327.9	257.0	256.6	180.0	
				Pmax	(lbs)	99.4	3448.2	40.2	37.2	84.7	3153.3	71.4	54.1	47.3	84.9	327.9	374.3	335.2	324.1	
				Pmax, Pth	(Ibs)	99.4	3320.1	30.1	32.3	84.7	3153.3	59.4	40.4	38.4	84.9	327.9	374.3	242.7	241.8	
				%FS	(Pth/Pmax)	100.0%	99.9%	31.1%	34.5%	100.0%	116.0%	65.6%	44.1%	45.8%	100.0%	100.0%	100.1%	67.0%	69.4%	
				Kmax, Klscc,	KIp-EHE (ksivin)	85.3	85.2	26.5	29.4	79.4	92.1	52.1	35.0	36.4	77.2	98.9	0.66	66.3	68.6	
				ITO	(Vin)	0.53	0.53	0.16	0.18	0.56	0.62	0.35	0.24	0.24	0.54	0.61	0.61	0.42	0.42	
				Gnet	(ksi)	286.3	282.6	89.7	100.7	273.5	317.4	176.1	117.6	125.7	263.8	248.2	241.9	162.7	169.0	
				Rsb. Hsrb		1.8	1.8	0.6	0.6	1.9	2.1	1.2	0.8	0.8	1.8	1.5	1.5	1.0	1.0	
				5£/5t	(10 ⁻⁸ - ⁻¹)	7900	2.1	4.0	0.9	8800	2.2	2.0	1.5	1.3	8500	5400	1.7	2.0	1.4	
				в	(in)	0.2043	0.1993	0.2103	0.2121	0.2140	0.2204	0.2119	0.2102	0.2151	0.2145					
				Kictod	(ksiVin)	147.2				138.8					159.1					
				Step Load	Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	150 lbs/min	10/5/2,4	10/5/2,4	10/5/1,4	
				*⊿	(Ibs)											339.2	339.5	227.4	235.3	
				Fu		0.96	0.96	0.30	0.33	06.0	1.04	0.59	0.40	0.41	0.87	1.12	1.12	0.75	0.78	
				Comments			Tensile Frame				Tensile Frame							No Holiday	No Holiday	

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 3-V-10 RSL¹⁰ (B) 4-pt Bend Test

G.6 Fatigue Pre-cracked Specimen Test Results

G.6.1 OD 1, FFS:

Figure G.6-1: Rod 3-V-10 OD 1, Graphical FFS Results

Figure G.6-2: Fracture Face of Rod 3-V-10 OD 1, FFS

G.6.2 OD 2, IHE:

Figure G.6-3: Rod 3-V-10 OD 2, Graphical IHE Results

Figure G.6-4: Fracture Face of Rod 3-V-10 OD 2, IHE

G.6.3 OD 3, EHE:

Figure G.6-5: Rod 3-V-10 OD 3, Graphical EHE Results

Figure G.6-6: Fracture Face of Rod 3-V-10 OD 3, EHE

G.6.4 OD 4, EHE:

Figure G.6-7: Rod 3-V-10 OD 4, Graphical EHE Results

Figure G.6-8: Fracture Face of Rod 3-V-10 OD 4, EHE

G.6.5 MR 7, FFS:

Figure G.6-9: Rod 3-V-10 MR 7, Graphical FFS Results

Figure G.6-10: Fracture Face of Rod 3-V-10 MR 7, FFS

G.6.6 MR 2, IHE:

Figure G.6-11: Rod 3-V-10 MR 2, Graphical IHE Results

Figure G.6-12: Fracture Face of Rod 3-V-10 MR 2, IHE

G.6.7 MR 3, EHE:

Figure G.6-13: Rod 3-V-10 MR 3, Graphical EHE Results

Figure G.6-14: Fracture Face of Rod 3-V-10 MR 3, EHE

G.6.8 MR 4, EHE:

Figure G.6-15: Rod 3-V-10 MR 4, Graphical EHE Results

Figure G.6-16: Fracture Face of Rod 3-V-10 MR 4, EHE

G.6.9 MR 8, EHE:

Figure G.6-17: Rod 3-V-10 MR 8, Graphical EHE Results

Figure G.6-18: Fracture Face of Rod 3-V-10 MR 8, EHE

G.6.10 Center 2, FFS:

Figure G.6-19: Rod 3-V-10 Center 2, Graphical FFS Results

Figure G.6-20: Fracture Face of Rod 3-V-10 Center 2, FFS

G.7 Threaded Specimen Test Results

G.7.1 Thd 1, FFS:

Figure G.7-1: Rod 3-V-10 Thd 1, Graphical FFS Results

Figure G.7-2: Rod 3-V-10 Thd 1 FFS Fracture Face

Page 185

Figure G.7-3: SEM of Rod 3-V-10 Thd 1, FFS

2) Ductile Overload 500X

3) Ductile Overload 1000X

G.7.2 Thd 2, IHE:

Figure G.7-4: Rod 3-V-10 Thd 2, Graphical IHE Results

Figure G.7-5: Rod 3-V-10 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

G.7.3 Thd 3, EHE:

Figure G.7-6: Rod 3-V-10 Thd 3, Graphical EHE Results

Figure G.7-7: Rod 3-V-10 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure G.7-8: SEM of Rod 3-V-10 Thd 3, EHE

Thread Root 25X

2) Mixed: Ductile Overload, Intergranular 1000X

1) Mixed: Ductile Overload, Intergranular 500X

3) Ductile Overload 1000X

G.7.4 Thd 4, EHE:

Figure G.7-9: Rod 3-V-10 Thd 4, Graphical EHE Results

Figure G.7-10: Rod 3-V-10 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Intergranular 500X

Intergranular 1000X

Appendix H: Rod 3-V-11

H.1 Description of Sample

Rod 3-V-11 was a spare Shear Key Anchor Bolt at the top of Pier E2 (S1/S2) and is from a similar heat of material as was tested in Test Rigs 1, 2, 3 and 4 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. These bolts are 3 inches in diameter with machined threads. The segment from one of four spares from this rod provided to LRA is shown in **Figure H.1-1**.

Figure H.1-1: Pier E2 Shear Key Anchor Bolt (Top), Rod 3-V-11

H.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 3-V-11 can be seen in **Figure H.2-1** where the black portion of the Shadowgraph represents the rod material. As can be seen from **Figure H.2-1**, these machined thread roots show non-uniformity.

Figure H.2-1: Thread Comparison of Three Threads of Rod 3-V-11

H.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 3-V-11 and can be seen versus time in **Figure H**.3-1. The final OCP recorded for Rod 3-V-11 was Vsce=-0.965 V.

Figure H.3-1: Open Circuit Potential for Rod 3-V-11

H.4 Hardness

The hardness data and profile for sample 3-V-11 are shown in **Table H.4-1** and **Figure H.4-1**.

s /N	Hardness	Average			
5/10	(HRC)	(HRC)			
Center 1, FFS	28.0	28.0			
MR 1, FFS	33.0				
MR 2, IHE	32.5	22.0			
MR 3, EHE	33.0	52.9			
MR 4, EHE	33.0				
OD 1, FFS	35.0				
OD 2, IHE	36.0				
OD 5, EHE	37.0				
OD 6, EHE	34.5				
OD 7, EHE	35.5				
OD 8, EHE	36.0	35.8			
Thd 1, FFS	35.5				
Thd 2, IHE	36.0				
Thd 3, EHE	36.0				
Thd 4, EHE	37.0				
Thd 7, EHE	35.0				

Table H.4-1: Hardness Data of Rod 3-V-11 Specimen

Figure H.4-1: Hardness Profile of Rod 3-V-11

H.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

H.5.1 Fatigue Pre-crack Results

Test V ASTM F1624 Bolt Specimen Results													
Threaded Rod ID # 3-V-11													
LRA Job No.:	LRA Job No.: TYL130901 Structural Component: Shear Key Anchor Bolts-Top Rod#: 3-V-11 Structural Component: Shear Key Anchor Bolts-Top												
Rod#:	3-V-11				ite y Anenor Borta	, 100							
Product Form:	1e		Com	ments: 2010 Mac	hined Threads								
Rod OD:	3"		Same Heat as I	D 2 Rods (Test Ri	gs #1 through #4 ⁻	Fest IV)							
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE							
			K _{max}	86.2									
			DTI _{th}	0.55									
	OD 1, FFS	35.0	Fu	0.97									
			Strain Rate	8600									
			(x10 ⁻⁸ in/in/sec)	8600									
			K _{max}		84.4								
			DTI _{th}		0.52								
	OD 2, IHE	36.0	Fu		0.95								
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)		2.0								
			K _{threshold}			53.2							
	OD 5, EHE		DTI _{th}			0.32							
pe		37.0	Fu			0.60							
acke			Strain Rate										
e-CL			(x10 ⁻⁸ in/in/sec)			1.0							
e Pro	OD 6. EHE		Kthrachold			32.1							
igue		34.5				0.21							
Fat			Fu			0.36							
	,		Strain Rate			0.50							
			$(x10^{-8} in/in/sec)$			2.0							
			Kutur 11			38 5							
						0.24							
	OD 7. FHF	2E E	Eu			0.24							
	007,111	00.0	Fu Strain Pate			0.45							
			$(x10^{-8} in/in/coc)$			1.5							
			K			33.4							
			Threshold DTI			0.21							
	OD 8. FHF	36.0	Fu			0.38							
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)			1.5							

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 3-V-11												
LRA Job No.:	-Top											
Rod#:	Rod#: 3-V-11											
Product Form:	Product Form: 1e Comments: 2010 Machined Threads											
Rod OD:	Rod OD: 3" Same Heat as ID 2 Rods (Test Rigs #1 through #4											
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE						
			K _{max}	80.9								
			DTI _{th}	0.54								
	MR 1, FFS	33.0	Fu	0.91								
			Strain Rate	0400								
			(x10 ⁻⁸ in/in/sec)	8100								
			K _{max}		86.4							
	MR 2, IHE		DTI _{th}		0.59							
		32.5	Fu		0.98							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		2.0							
ked			K _{threshold}			39.8						
crac	MR 3, EHE					0.27						
re-		33.0	Fu			0.45						
er P			Strain Rate			0.43						
Itigu			$(x10^{-8} in/in/sec)$			2.2						
E E			K			36.9						
			"threshold			0.25						
	MR4 FHF	33.0	DTI _{th}			0.25						
	WIX 4, LIIL	33.0	FU Strain Data			0.42						
			$(x10^{-8} in/in/coc)$			1.5						
				72.2								
			K _{max}	12.2								
	Contor 1 FFC	20.0	DTI _{th}	0.55								
	Center 1, FFS	28.0	Fu	0.82								
			Strain Rate	7200								
			(x10 ^{-*} in/in/sec)	. 200								

H.5.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 3-V-11												
LRA Job No.: TYL130901 Structural Component: Shear Key Anchor Bolts-Top (S1/S2) Bod#: 3-V-11 Structural Component: Shear Key Anchor Bolts-Top (S1/S2)												
Rod#:	3-V-11		Structural Component. Shear Key Anchor Donts-Top (31/32)									
Product Form:	1e	Comments: 2010 Machined Threads										
Rod OD:	Rod OD: 3" Same Heat as ID 2 Rods (Test Rigs #1 throug											
	Sample #/ID	HRC		P-IHE	P-EHE							
			Pmax* (lbs)	342.3								
			Fu	1.13								
	Thd 1, FFS	35.5	Rsb	1.5								
			Strain Rate	4000								
			(x10 ⁻⁸ in/in/sec)	4900								
			P _{threshold} * (lbs)		333.7							
			Fu		1.10							
	Thd 2, IHE	36.0	Hsr		1.5							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		2.2							
			P _{threshold} * (lbs)			239.7						
be		36.0	Fu			0.79						
ead	Thd 3, EHE		Hsr			1.1						
Three			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			2.2						
			P _{throshold} * (lbs)			240.1						
			Fu			0.79						
	Thd 4. EHE	37.0	Hsr			1.0						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			2.4						
			P _{throshold} * (lbs)			248.6						
			Fu			0.82						
	Thd 7. EHE	35.0	Hsr			1.1						
	······, -··-		Strain Rate									
			$(x10^{-8} in/in/sec)$			1.1						

H.5.3 Summary Table

:u	D:				3.5%	3.5%	3.5%	3.5%			3.5%	3.5%	S			3.5%	3.5%	3.59
1e	3"	Environment	Air	Air	% NaCl @ -1.106V	% NaCl @ -1.106V	% NaCl @ -1.106V	% NaCl @ -1.106V	Air	Air	% NaCl @ -1.106V	% NaCl @ -1.106V	Air	Air	Air	% NaCl @ -1.106V	% NaCl @ -1.106V	% NaCl @ -1.106V
		Hardness (HRC)	35.0	36.0	37.0	34.5	35.5	36.0	33.0	32.5	33.0	33.0	28.0	35.5	36.0	36.0	37.0	35.0
		UTS (ksi)	157	162	167	155	159	162	149	147	149	149	131	159	162	162	167	157
		Ptarget (Ibs)	93.8	1891.2	30.0	60.0	40.0	40.0	91.5	1910.4	59.7	41.7	84.7	362.0	284.6	284.6	320.0	285.0
		Pmax (Ibs)	93.8	3122.2	67.5	42.0	48.0	38.1	91.5	3155.0	50.8	50.0	84.7	362.0	359.0	312.7	348.6	299.5
		Pmax, Pth (Ibs)	93.8	3122.2	62.9	35.9	41.9	35.9	91.5	3155.0	41.7	41.6	84.7	362.0	352.6	254.1	254.2	268.8
		%FS (Pth/Pmax)	100.0%	97.9%	61.7%	37.2%	44.7%	38.7%	100.0%	106.8%	49.2%	45.6%	100.0%	100.0%	97.5%	70.0%	70.1%	72.6%
		Kmax, Klscc, Klp-EHE (ksivin)	86.2	84.4	53.2	32.1	38.5	33.4	80.9	86.4	39.8	36.9	72.2	99.8	97.3	66.9	70.0	72.5
		DTI (vin)	0.55	0.52	0.32	0.21	0.24	0.21	0.54	0.59	0.27	0.25	0.55	0.63	0.60	0.43	0.42	0.46
		Onet (ksi)	296.0	284.6	177.9	108.4	132.1	114.6	274.4	292.1	138.1	125.5	241.9	245.5	239.6	171.9	172.0	177.6
		isb, Hsrb	1.9	1.8	1.1	0.7	0.8	0.7	1.8	2.0	0.9	0.8	1.8	1.5	1.5	1.1	1.0	1.1
		δ£/δt (10 ⁻⁸ s ⁻¹)	8600	2.0	1.0	2.0	1.5	1.5	8100	2.0	2.2	1.5	7200	4900	2.2	2.2	2.4	1.1
		a (in)	0.2156	0.2079	0.2054	0.2096	0.2168	0.2157	0.2113	0.2094	0.2202	0.2113	0.2068					
		Klctod (ksiVin)	132.7						147.8				148.4					
		Step Load Profile	50 lbs/min	10/5/2,4	1/110/3-10/5/4	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	150 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/1,8
		P* (Ibs)												342.3	333.7	239.7	240.1	248.6
		Fu	0.97	0.95	0.60	0.36	0.43	0.38	0.91	0.98	0.45	0.42	0.82	1.13	1.10	0.79	0.79	0.82
		Comments		Tensile Frame	Test interrupted for 10 minutes.					Tensile Frame						Did not crack in Holiday.	No Holiday	Same strain rate as SN6 Did not crack in Holiday.

Page 198

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 3-V-11 RSL^m (8) 4-pt Bend Test

> TYL130901 3-V-11

> LRA Job No.: Rod #:

H.6 Fatigue Pre-cracked Specimen Test Results

H.6.1 OD 1, FFS:

Figure H.6-1: Rod 3-V-11 OD 1, Graphical FFS Results

Figure H.6-2: Fracture Face of Rod 3-V-11 OD 1, FFS

H.6.2 OD 2, IHE:

Figure H.6-3: Rod 3-V-11 OD 2, Graphical IHE Results

Figure H.6-4: Fracture Face of Rod 3-V-11 OD 2, IHE

H.6.3 OD 5, EHE:

Figure H.6-5: Rod 3-V-11 OD 5, Graphical EHE Results

Figure H.6-6: Fracture Face of Rod 3-V-11 OD 5, EHE

H.6.4 OD 6, EHE:

Figure H.6-7: Rod 3-V-11 OD 6, Graphical EHE Results

Figure H.6-8: Fracture Face of Rod 3-V-11 OD 6, EHE

H.6.5 OD 7, EHE:

Figure H.6-9: Rod 3-V-11 OD 7, Graphical EHE Results

Figure H.6-10: Fracture Face of Rod 3-V-11 OD 7, EHE

H.6.6 OD 8, EHE:

Figure H.6-11: Rod 3-V-11 OD 8, Graphical EHE Results

Figure H.6-12: Fracture Face of Rod 3-V-11 OD 8, EHE

H.6.7 MR 1, FFS:

Figure H.6-13: Rod 3-V-11 MR 1, Graphical FFS Results

Figure H.6-14: Fracture Face of Rod 3-V-11 MR 1, FFS

H.6.8 MR 2, IHE:

Figure H.6-15: Rod 3-V-11 MR 2, Graphical IHE Results

Figure H.6-16: Fracture Face of Rod 3-V-11 MR 2, IHE

H.6.9 MR 3, EHE:

Figure H.6-17: Rod 3-V-11 MR 3, Graphical EHE Results

Figure H.6-18: Fracture Face of Rod 3-V-11 MR 3, EHE

Figure H.6-19: SEM of Rod 3-V-11 MR 3, EHE

Macro 25X

Intergranular 1000X

Intergranular 500X

Overload 1000X

H.6.10 MR 4, EHE:

Figure H.6-20: Rod 3-V-11 MR 4, Graphical EHE Results

Figure H.6-21: Fracture Face of Rod 3-V-11 MR 4, EHE
H.6.11 Center 1, FFS:

Figure H.6-22: Rod 3-V-11 Center 1, Graphical FFS Results

Figure H.6-23: Fracture Face of Rod 3-V-11 Center 1, FFS

H.7 Threaded Specimen Test Results

H.7.1 Thd 1, FFS:

Figure H.7-1: Rod 3-V-11 Thd 1, Graphical FFS Results

Figure H.7-2: Rod 3-V-11 Thd 1 FFS Fracture Face

H.7.2 Thd 2, IHE:

Figure H.7-3: Rod 3-V-11 Thd 2, Graphical IHE Results

Figure H.7-4: Rod 3-V-11 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

Figure H.7-5: Rod 3-V-11 Thd 3 Graphical EHE Results

Figure H.7-6: Rod 3-V-11 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

2) Mixed: Ductile Overload, Intergranular 500X

Figure H.7-7: SEM of Rod 3-V-11 Thd 3, EHE

1) Mixed: Ductile Overload, Intergranular 250X

3) Mixed: Ductile Overload, Intergranular 1000X

H.7.4 Thd 4, EHE:

Figure H.7-8: Rod 3-V-11 Thd 4 Graphical EHE Results

Figure H.7-9: Rod 3-V-11 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure H.7-10: SEM of Rod 3-V-11 Thd 4, EHE

2) Mixed: Ductile Overload, Intergranular 1000X

1) Mixed: Ductile Overload, Intergranular 500X

3) Ductile Overload 1000X

H.7.5 Thd 7, EHE:

Figure H.7-11: Rod 3-V-11 Thd 7 Graphical EHE Results

Figure H.7-12: Rod 3-V-11 Thd 7 EHE Fracture Face

Appendix I: Rod 3-V-12

I.1 Description of Sample

Rod 3-V-12 was a spare Shear Key Anchor Bolt at the top of Pier E2 (S1/S2) and is from a similar heat of material as was tested in Test Rigs 1, 2, 3 and 4 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. The bolts are 3 inches in diameter with machined threads. The segment from one of four spares from this rod provided to LRA is shown in Figure I.1-1.

Figure I.1-1: Pier E2 Shear Key Anchor Bolt (Top), Rod 3-V-12

I.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 3-V-12 can be seen in Figure I.2-1 where the black portion of the Shadowgraph represents the rod material. As can be seen from Figure I.2-1, these cut thread roots show non-uniformity and exhibit a sharp radius.

Figure I.2-1: Thread Comparison of Three Threads of Rod 3-V-12

I.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 3-V-12 and can be seen versus time in **Figure** I.3-1. The final OCP recorded for Rod 3-V-12 was Vsce=-1.003 V.

Figure I.3-1: Open Circuit Potential for Rod 3-V-12

1.4 Hardness

The hardness data and profile for sample 3-V-12 are shown in Table I.4-1 and Figure I.4-1.

S/N	Hardness (HRC)	Average (HRC)
Center 2, FFS	31.0	31.0
MR 2, IHE	33.0	
MR 3, EHE	33.0	22.1
MR 4, EHE	32.5	55.1
MR 10, FFS	34.0	
OD 2, IHE	35.5	
OD 6, EHE	35.5	
OD 10, FFS	36.0	
Thd 2, IHE	35.0	35.6
Thd 3, EHE	35.5	55.0
Thd 4, EHE	35.5	
Thd 5, FFS	36.0	
Thd 6, EHE	36.0	

Table I.4-1: Hardness Data of Rod 3-V-12 Specimen

Т

Figure I.4-1: Hardness Profile of Rod 3-V-12

I.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

I.5.1 Fatigue Pre-crack Results

Threaded Rod ID # 3-V-12											
LRA Job No.:	TYL130901	901 Structural Component: Shear Key Anchor Bolts-Top									
Rod#:	3-V-12										
Product Form:	1e	Comments: 2010 Machined Threads									
Rod OD:	3"		Same Heat as ID 2 Rods (Test Rigs #1 through #4 Test IV)								
	Sample #/ID	HRC	HRC K-FFS K-IHE								
			K _{max}	85.3							
			DTI _{th}	0.53							
	OD 10, FFS	36.0	Fu	0.96							
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)	7600							
	OD 2, IHE		Kthrashold		88.7						
			DTI		0.56						
pa		35.5	Fu		1.00						
acke			Strain Rate		2.00						
e-CL			(x10 ⁻⁸ in/in/sec)		2.3						
e Pr	OD 6, EHE		K _{threshold}			23.1					
igu			DTL			0.14					
Fat		35.5	Fu			0.26					
			Strain Rate			0.20					
			(x10 ⁻⁸ in/in/sec)			1.2					
			K _{max}	79.2							
			DTL.	0.52							
	MR 10, FFS	34.0	Fu	0.89							
	-, -	54.0	Strain Rate	0.05							
			$(x10^{-8} in/in/sec)$	8400							

Test V ASTM F1624 Bolt Specimen Results										
			Threaded Rod ID #	3-V-12						
LRA Job No.:	TYL130901	Structural Component: Shear Key Anchor Bolts-Top								
Rod#:	3-V-12									
Product Form:	1e	Comments: 2010 Machined Threads								
Rod OD:	3"		Same Heat as ID	2 Rods (Test Rig	s #1 through #4 Te	est IV)				
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE				
			K _{threshold}		92.1					
			DTI _{th}		0.62					
	MR 2, IHE	33.0	Fu		1.04					
			Strain Rate		2.2					
			(x10 ⁻⁸ in/in/sec)		2.5					
	MR 3, EHE	33.0	K _{threshold}			33.6				
			DTI _{th}			0.23				
e			Fu			0.38				
ackı			Strain Rate			2.1				
e-cr			(x10 ⁻⁸ in/in/sec)			2.1				
e Pro	MR 4, EHE		K _{threshold}			35.8				
igue		32.5	DTI _{th}			0.24				
Fat			Fu			0.40				
			Strain Rate			1.6				
			(x10 ⁻⁸ in/in/sec)			1.0				
			K _{max}	77.1						
			DTI _{th}	0.55						
	Center 2, FFS	31.0	Fu	0.87						
			Strain Rate (x10 ⁻⁸ in/in/sec)	8200						

I.5.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results												
			Threaded Rod ID) # 3-V-12								
LRA Job No.:	TYL130901	Structural Component: Shear Key Anchor Bolts-Top										
Rod#:	3-V-12											
Product Form:	1e		Comments: 2010 Machined Threads									
Rod OD:	3"		Same Heat as II	D 2 Rods (Test Rig	gs #1 through #4 1	Test IV)						
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE						
			Pmax* (lbs)	340.9								
			Fu	1.12								
	Thd 5, FFS	36.0	Rsb	1.5								
			Strain Rate	2000								
			(x10 ⁻⁸ in/in/sec)	2800								
			P _{threshold} * (Ibs)		328.6							
	Thd 2, IHE		Fu		1.08							
		35.0	Hsr		1.5							
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)		2.0							
			Pthrasheld* (lbs)			227.4						
g	Thd 3, EHE	35.5	Fu			0.75						
eade			Hsr			1.0						
Thre			Strain Rate			2.0						
			$(x10^{-8} in/in/sec)$			2.1						
			P* (lhs)			245.9						
			Fu			0.81						
	Thd 4 FHF	35 5	Hsr			1.1						
	1110 - , 2112	55.5	Strain Rate									
			$(x10^{-8} in/in/soc)$			1.9						
						240.1						
			r threshold (IDS)			240.1						
		26.0	FU			0.79						
		50.0	Etrain Pata			1.1						
						1.6						
			(X10 ⁻ In/In/sec)									

I.5.3 Summary Table

LR		Proc				OC	ō	ō	ΔF	Σ	Σ n ^q ·	Σ	Cen	μ	μ	Th	Th.	тh
A Job No.:	Rod #:	duct Form:	Rod OD:		s/N	O 10, FFS	D 2, IHE	D 6, EHE	R 10, FFS	IR 2, IHE	R 3, EHE	R 4, EHE	Iter 2, FFS	d 5, FFS	id 2, IHE	id 3, EHE	id 4, EHE	id 6, EHE
TYL130901	3-V-12	1e	ئ		Environment	Air	Air	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
				Unverse	(HRC)	36.0	35.5	35.5	34.0	33.0	33.0	32.5	31.0	36.0	35.0	35.5	35.5	36.0
				Ĕ	(ksi)	162	159	159	153	149	149	147	141	162	157	159	159	162
					(Ibs)	99.4	2073.6	35.0	88.5	1996.8	62.4	44.0	85.5	365.0	256.0	285.8	248.0	210.0
				10000	(Ibs)	99.4	3215.1	33.3	88.5	3200.6	46.8	48.4	85.5	365.0	362.6	329.1	310.1	294.0
				Dmov Dut	(Ibs) (Ibs)	99.4	3089.5	26.2	88.5	3200.6	37.3	39.5	85.5	365.0	354.1	241.3	258.8	250.4
					%FS (Pth/Pmax)	100.0%	104.0%	27.1%	100.0%	116.3%	42.4%	45.2%	100.0%	100.0%	96.4%	66.7%	72.1%	70.4%
				V	ктах, мэсс, КІр-ене (ksivin)	85.3	88.7	23.1	79.2	92.1	33.6	35.8	77.1	99.4	95.8	66.3	71.7	70.0
				Ę	, Lin	0.53	0.56	0.14	0.52	0.62	0.23	0.24	0.55	0.61	0.61	0.42	0.45	0.43
				100	(ksi)	286.7	304.4	78.2	269.5	316.2	114.4	122.2	262.7	243.4	234.9	162.6	176.7	172.3
					tsb, Hsrb	1.8	1.9	0.5	1.8	2.1	0.8	0.8	1.9	1.5	1.5	1.0	1.1	1.1
				55/5t	00,00 [10 ⁻⁸ s ⁻¹]	7600	2.3	1.2	8400	2.3	2.1	1.6	8200	2800	2	2.1	1.9	1.6
				,	ı آب	0.20496	0.2151	0.2094	0.2114	0.2163	0.2134	0.2143	0.21267	N/A	N/A	N/A	N/A	N/A
				Victord	kirtou (ksi Vin)	143.1			139.0				138.8					
				Cton Lood	Profile	50lbs/min	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	0.2 in/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4
				ž	(lbs)									340.9	328.6	227.4	245.9	240.1
					3	0.96	1.00	0.26	0.89	1.04	0.38	0.40	0.87	1.12	1.08	0.75	0.81	0.79
					Comments		Tensile Frame			Tensile Frame						Did not crack in Holiday.	Did not crack in Holiday.	Did not crack in Holiday.

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 3-V-12 RSL¹⁴ (B) 4-bt Bend Test

I.6 Fatigue Pre-cracked Specimen Test Results

I.6.1 OD 10, FFS:

Figure I.6-1: Rod 3-V-12 OD 10, Graphical FFS Results

Figure I.6-2: Fracture Face of Rod 3-V-12 OD 10, FFS

I.6.2 OD 2, IHE:

Figure I.6-3: Rod 3-V-12 OD 2, Graphical IHE Results

Figure I.6-4: Fracture Face of Rod 3-V-12 OD 2, IHE

I.6.3 OD 6, EHE:

Figure I.6-5: Rod 3-V-12 OD 6, Graphical EHE Results

Figure I.6-6: Fracture Face of Rod 3-V-12 OD 6, EHE

I.6.4 MR 10, FFS:

Figure I.6-7: Rod 3-V-12 MR 10, Graphical FFS Results

Figure I.6-8: Fracture Face of Rod 3-V-12 MR 10, FFS

I.6.5 MR 2, IHE:

Figure I.6-9: Rod 3-V-12 MR 2, Graphical IHE Results

Figure I.6-10: Fracture Face of Rod 3-V-12 MR 2, IHE

Figure I.6-11: Rod 3-V-12 MR 3, Graphical EHE Results

Figure I.6-12: Fracture Face of Rod 3-V-12 MR 3, EHE

Figure I.6-13: Rod 3-V-12 MR 4, Graphical EHE Results

Figure I.6-14: Fracture Face of Rod 3-V-12 MR 4, EHE

I.6.8 Center 2, FFS:

Figure I.6-15: Rod 3-V-12 Center 2, Graphical FFS Results

Figure I.6-16: Fracture Face of Rod 3-V-12 Center 2, FFS

Figure I.6-17: SEM of Rod 3-V-12 Center 2, FFS

fpc – OL transition 50X

Overload 1000X

I.7 Threaded Specimen Test Results

I.7.1 Thd 5, FFS:

Figure I.7-1: Rod 3-V-12 Thd 5, Graphical FFS Results

Figure I.7-2: Rod 3-V-12 Thd 5 FFS Fracture Face

Figure I.7-3: Rod 3-V-12 Thd 2, Graphical IHE Results

Figure I.7-4: Rod 3-V-12 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

Figure I.7-5: Rod 3-V-12 Thd 3 Graphical EHE Results

Figure I.7-6: Rod 3-V-12 Thd 3 EHE Fracture Face

Thread Root 20X

2) Mixed: Cleavage, Intergranular 1000X

Figure I.7-7: SEM of Rod 3-V-12 Thd 3, EHE

1) Intergranular to Impact Transition 100X

3) Impact, Cleavage 1000X

Figure I.7-8: Rod 3-V-12 Thd 4 Graphical EHE Results

Figure I.7-9: Rod 3-V-12 Thd 4, Thread Root from Side and Normal Views Post EHE Test

Thread Root 25X

2) Intergranular 1000X

Figure I.7-10: SEM of Rod 3-V-12 Thd 4, EHE

1) Embrittlement, Mixed: Mode Transition 100X

3) Ductile Overload 1000X

Figure I.7-11: Rod 3-V-12 Thd 6 Graphical EHE Results

Figure I.7-12: Rod 3-V-12 Thd 6 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix J: Rod 12-V-B2E-4

J.1 Description of Sample

Rod 12-V-B2E-4 was a Tower Anchorage Anchor Bolt located at the bottom of the tower from the same group of material that was tested in Test Rig 6 in Test IV. It was AISI 4140 steel, ASTM A354 Grade BD threaded rod. These bolts are 3-inches in diameter with machined threads. The segment from this section of the rod provided to LRA is shown in **Figure J.1-1**.

Figure J.1-1: Tower Anchorage Anchor Bolt (Bottom), Rod 12-V-B2E-4

J.2 Thread Profile

The threads were compared using an optical comparator. A Shadowgraph of the threads from Rod 12-V-B2E-4 can be seen in **Figure J.2-1** where the black portion of the Shadowgraph represents the rod material. As can be seen from **Figure J.2-1**, these machined thread roots show non-uniformity and exhibit a sharp radius.

Figure J.2-1: Thread Comparison of Three Threads of Rod 12-V-B2E-4

J.3 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 12-V-B2E-4 and can be seen versus time in **Figure** J.3-1. The final OCP recorded for Rod 12-V-B2E-4 was Vsce=-0.830 V.

Figure J.3-1: Open Circuit Potential for Rod 12-V-B2E-4

J.4 Hardness

The hardness data and profile for sample 12-V-B2E-4 are shown in **Table J.4-1** and **Figure J.4-1**.

€ /N	Hardness	Average		
5/10	(HRC)	(HRC)		
Center 1, FFS	30.0	30.0		
MR 1, FFS	37.0			
MR 2, IHE	35.5	25.0		
MR 3, EHE	33.5	55.0		
MR 4, EHE	34.0			
OD 1, FFS	37.5			
OD 2, IHE	37.0			
OD 5, EHE	37.0			
OD 6, EHE	36.5	27 0		
Thd 1, FFS	36.5	57.0		
Thd 2, IHE	37.0			
Thd 3, EHE	37.5			
Thd 4, EHE	37.0			

Table J.4-1: Hardness Data of Rod 12-V-B2E-4 Specimen

Figure J.4-1: Hardness Profile of Rod 12-V-B2E-4

J.5 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

J.5.1 Fatigue Pre-cracked Results:

Test V ASTM F1624 Bolt Specimen Results										
		Т	hreaded Rod ID # 12	2-V-b2E-4						
LRA Job No.:	TYL130901	Structural Component: Tower Anchorage Anchor Bolts								
Rod#:	12-V-b2E-4	(75 Dia. Anchor Bolts)								
Product Form:	1e	Co	mments: Machined	Threads; Same	Group as Test Rig	g #6 in Test IV				
Rod OD:	3"			,	· · · · · ·					
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE				
			K _{max}	90.7						
			DTI _{th}	0.54						
	OD 1, FFS	37.5	Fu	1.02						
			Strain Rate	8500						
			(x10 ⁻⁸ in/in/sec)							
			K _{threshold}		86.8					
	OD 2, IHE		DTI _{th}		0.52					
		37.0	Fu		0.98					
			Strain Rate		2.1					
			(x10 ⁻⁸ in/in/sec)		2.1					
ked	OD 5, EHE	37.0	K _{threshold}			22.6				
crac			DTI _{th}			0.14				
re-o			Fu			0.26				
a e P			Strain Rate							
atig			(x10 ⁻⁸ in/in/sec)			1.0				
Ű.			Kthreshold			24.3				
			DTI			0.15				
		36.5	Fu			0.27				
	000, 2112	30.5	Strain Rate			0.27				
			$(x 10^{-8} in/in/soc)$			1.0				
				06.2						
			K _{max}	86.2						
		37.0	FU Data Maria	0.52						
	IVIR 1, FFS		KSD-IVIAX	0.97						
			Strain Rate	8150						
			(x10 in/in/sec)							

Test V ASTM F1624 Bolt Specimen Results											
Threaded Rod ID # 12-V-b2E-4											
LRA Job No.:	Job No.: TYL130901 Structural Component: Tower Anchorage Anchor Bolts										
Rod#:	12-V-b2E-4		(75 Dia. Anchor Bolts)								
Product Form:	1e	6	Comments: Machined Threads: Same Group as Test Dig #6 in Test IV								
Rod OD:	3"			Threads, Same							
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE					
			K _{threshold}		89.9						
			DTI _{th}		0.56						
	MR 2, IHE	35.5	Fu		1.02						
			Strain Rate		25						
			(x10 ⁻⁸ in/in/sec)		2.5						
	MR 3, EHE		K _{threshold}			42.7					
			DTI _{th}			0.28					
ba		33.5	Fu			0.48					
ack			Strain Rate								
e-cr			(x10 ⁻⁸ in/in/sec)			2.4					
Pr			K _{threshold}			39.8					
igue			DTI _{th}			0.26					
Fat	MR 4, EHE	34.0	Fu			0.45					
	-		Strain Rate								
			(x10 ⁻⁸ in/in/sec)			2.0					
			K _{max}	79.5							
			DTI _{th}	0.58							
	Center 1, FFS	30.0	Fu	0.90							
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)	8600							
J.5.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 12-V-b2E-4												
LRA Job No.: TYL130901 Structural Component: Tower Anchorage Anchor Bolts												
Rod#:	12-V-b2E-4		(75 Dia. Anchor Bolts)									
Product Form:	1e	Comr	Commenter Machined Threader Same Crown as Test Dig #C in Test 11									
Rod OD:	3"	Collin	nents. Machineu i	ineaus, same u								
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE						
			Pmax* (lbs)	334.4								
			Fu	1.10								
	Thd 1, FFS	36.5	Rsb	1.5								
			Strain Rate	2000								
			(x10 ⁻⁸ in/in/sec)	2900								
	Thd 2, IHE		P _{threshold} * (lbs)		331.0							
			Fu		1.09							
		37.0	Hsr		1.4							
σ			Strain Rate		2.2							
ade			(x10 ⁻⁸ in/in/sec)		2.2							
hrea			P _{threshold} * (lbs)			218.1						
F	Thd 3, EHE	37.5	Fu			0.72						
			Hsr			0.9						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			2.4						
			P _{threshold} * (lbs)			222.9						
			Fu			0.73						
	Thd 4, EHE	37.0	Hsr			0.9						
	,		Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.6						

Caltrans
333 Burma Road, Oakland, CA 94607

J.5.3	Summary	Table:
-------	---------	--------

Pro												[\]				
Rod #: pduct Form:	Rod OD:	, jei	N/S	OD 1, FFS	OD 2, IHE	OD 5, EHE	OD 6, EHE	MR 1, FFS	MR 2, IHE	MR 3, EHE	MR 4, EHE	Center 1, FFS	Thd 1, FFS	Thd 2, IHE	Thd 3, EHE	Thd 4, EHE
12-V-b2E-4 1e	3"		Environment	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
		Hardness	(HRC)	37.5	37.0	37.0	36.5	37.0	35.5	33.5	34.0	30.0	36.5	37.0	37.5	37.0
		UTS	(ksi)	169	167	167	164	167	159	151	153	138	164	167	169	167
		Ptarget	(Ibs)	97.5	2016.0	30.0	28.0	97.3	2144.0	66.6	58.0	85.8	294.4	294.0	294.4	235.0
		Ртах	(Ibs)	97.5	3125.9	30.0	29.4	97.3	3108.8	56.6	55.2	85.8	294.4	356.0	294.7	352.8
		Pmax, Pth	(Ibs)	97.5	3125.9	25.4	26.5	97.3	3108.8	46.6	43.4	85.8	294.4	351.5	219.8	256.9
		%FS	(Pth/Pmax)	100.0%	95.7%	24.9%	26.8%	100.0%	104.3%	49.5%	46.2%	100.0%	100.0%	%0.66	65.2%	66.7%
		Kmax, Klscc,	Klp-EHE (ksivin)	90.7	86.8	22.6	24.3	86.2	89.9	42.7	39.8	79.5	97.5	96.5	63.6	65.0
		DTI	(vin)	0.54	0.52	0.14	0.15	0.52	0.56	0.28	0.26	0.58	0.59	0.58	0.38	0.39
		Gnet ,	(ksi)	311.8	294.3	76.7	83.0	292.2	308.3	146.0	136.3	272.9	249.9	237.2	158.1	156.3
		4	KSD, HSrD	1.8	1.8	0.5	0.5	1.8	1.9	1.0	0.9	2.0	1.5	1.4	0.9	0.9
		δ£/δt	(10 ⁻⁸ s ⁻¹)	8500	2.1	1.0	1.0	8150	2.5	2.4	2.0	8600	2900	2.2	2.4	1.6
		ø	(in)	0.2163	0.2099	0.2075	0.2115	0.2092	0.2143	0.213	0.2137	0.2144	N/A	N/A	N/A	N/A
		Klctod	(ksivin)	152.3				143.4				141.6				
		Step Load	Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	0.2 in/min	10/5/2,4	10/5/2,4	10/5/2,4
		*	(Ibs)		0	0	0)		0	-		334.4	331.0	218.1 (222.9 (
			ы	1.02	0.98	0.26	0.27	0.97	1.02	0.48	0.45	0.90	1.10	1.09	0.72	0.73
		-	Comments		Tensile Frame				Tensile Frame						Did Not Crack in Holiday	Did Not Crack in Holiday

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 12-V-b2E-4 RSL[™] (B) 4-pt Bend Test

TYL130901

LRA Job No.:

J.6 Fatigue Pre-cracked Specimen Test Results

J.6.1 OD 1, FFS:

Figure J.6-1: Rod 12-V-B2E-4 OD 1, Graphical FFS Results

Figure J.6-2: Fracture Face of Rod 12-V-B2E-4 OD 1, FFS

J.6.2 OD 2, IHE:

Figure J.6-3: Rod 12-V-B2E-4 OD 2, Graphical IHE Results

Figure J.6-4: Fracture Face of Rod 12-V-B2E-4 OD 2, IHE

Figure J.6-5: Rod 12-V-B2E-4 OD 5, Graphical EHE Results

Figure J.6-6: Fracture Face of Rod 12-V-B2E-4 OD 5, EHE

Figure J.6-7: Rod 12-V-B2E-4 OD 6, Graphical EHE Results

Figure J.6-8: Fracture Face of Rod 12-V-B2E-4 OD 6, EHE

J.6.5 MR 1, FFS:

Figure J.6-9: Rod 12-V-B2E-4 MR 1, Graphical FFS Results

Figure J.6-10: Fracture Face of Rod 12-V-B2E-4 MR 1, FFS

J.6.6 MR 2, IHE:

Figure J.6-11: Rod 12-V-B2E-4 MR 2, Graphical IHE Results

Figure J.6-12: Fracture Face of Rod 12-V-B2E-4 MR 2, IHE

J.6.7 MR 3, EHE:

Figure J.6-13: Rod 12-V-B2E-4 MR 3, Graphical EHE Results

Figure J.6-14: Fracture Face of Rod 12-V-B2E-4 MR 3, EHE

J.6.8 MR 4, EHE:

Figure J.6-15: Rod 12-V-B2E-4 MR 4, Graphical EHE Results

Figure J.6-16: Fracture Face of Rod 12-V-B2E-4 MR 4, EHE

J.6.9 Center 1, FFS:

Figure J.6-17: Rod 12-V-B2E-4 Center 1, Graphical FFS Results

Figure J.6-18: Fracture Face of Rod 12-V-B2E-4 Center 1, FFS

J.7 Threaded Specimen Test Results

J.7.1 Thd 1, FFS:

Figure J.7-1: Rod 12-V-B2E-4 Thd 1, Graphical FFS Results

Figure J.7-2: Rod 12-V-B2E-4 Thd 1 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Figure J.7-3: Rod 12-V-B2E-4 Thd 2, Graphical IHE Results

Figure J.7-4: Rod 12-V-B2E-4 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

J.7.3 Thd 3, EHE:

Figure J.7-5: Rod 12-V-B2E-4 Thd 3 Graphical EHE Results

Figure J.7-6: Rod 12-V-B2E-4 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Thread Root 25X

2) Mixed: Ductile Overload, Intergranular 1000X

1) Mixed: Ductile Overload, Intergranular 500X

3) Ductile Overload 1000X

J.7.4 Thd 4, EHE:

Figure J.7-8: Rod 12-V-B2E-4 Thd 4 Graphical EHE Results

Figure J.7-9: Rod 12-V-B2E-4 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Zinc

Impact

Figure J.7-10: SEM of Rod 12-V-B2E-4 Thd 4, EHE 1.2Intergranular Mixed

Thread Root 25X

2) Mixed: Ductile Overload, Intergranular 1000X

1) Mixed: Ductile Overload, Intergranular 500X

3) Mixed: Ductile Overload, Intergranular 1000X

Appendix K: Rod 12-V-E109

K.1 Description of Sample

Rod 12-V-E109 was a Tower Anchorage Anchor Bolt located at the bottom of the tower from the same group of material that was tested in Test Rig 6 in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. The bolts are 3 inches in diameter with machined threads. The segment from this section of the rod provided to LRA is shown in **Figure K.1-1**.

Figure K.1-1: Tower Anchorage Anchor Bolt (Bottom), Rod 12-V-E109

K.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 12-V-E109 and can be seen versus time in **Figure K**.2-1. The final OCP recorded for Rod 12-V-E109 was Vsce=-0.887 V.

Figure K.2-1: Open Circuit Potential for Rod 12-V-E109

Г

K.3 Hardness

The hardness data and profile for sample 12-V-E109 are shown in Table K.3-1 and Figure K.3-1.

. .

S/N	Hardness	Average	
3/11	(HRC)	(HRC)	
Center 1, FFS	31.5	31.5	
MR 1, FFS	37.0		
MR 2, IHE	35.5	36 5	
MR 3, EHE	37.5	50.5	
MR 5, EHE	36.0		
OD 1, FFS	38.0		
OD 2, IHE	38.0		
OD 3, EHE	38.5		
OD 5, EHE	38.0	37.9	
Thd 1, FFS	38.0		
Thd 3, EHE	37.5		
Thd 5, EHE	37.5		

Table K.3-1: Hardness Data of Rod 12-V-E109 Specimen .

.

Figure K.3-1: Hardness Profile of Rod 12-V-E109

K.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

K.4.1 Fatigue Pre-crack Results

Test V ASTM F1624 Bolt Specimen Results										
Threaded Rod ID # 12-V-E109										
LRA Job No.:	TYL130901	Structural Component: Tower Anchorage Anchor Bolts								
Rod#:	12-V-E109	(75 Dia. Anchor Bolts)								
Product Form:	1e	Comm	ents: Machined T	hreads: Same Gr	oup as Test Rig	g #6 in Test IV				
Rod OD:	3"					5				
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE				
			K _{max}	92.1						
			DTI _{th}	0.54						
	OD 1, FFS	38.0	Fu	1.04						
			Strain Rate	7000						
			(x10 ⁻⁸ in/in/sec)	7900						
			K _{threshold}		89.8					
			DTI _{th}		0.52					
	OD 2, IHE	38.0	Fu		1.01					
			Strain Rate							
7			(x10 ⁻⁸ in/in/sec)		2.5					
cke	OD 3, EHE		K _{threshold}			21.5				
-cra		38.5	DTI _{th}			0.12				
Pre			Fu			0.24				
en			Strain Rate							
atig			(x10 ⁻⁸ in/in/sec)			4.8				
Щ			K _{threshold}			19.2				
			DTI _{th}			0.11				
	OD 5, EHE	38.0	Fu			0.22				
			Strain Rate							
			(x10 ⁻⁸ in/in/sec)			1.0				
			K _{max}	86.2						
			DTI _{th}	0.52						
	MR 1, FFS	37.0	Fu	0.97						
			Strain Rate							
			(x10 ⁻⁸ in/in/sec)	/500						

Test V ASTM F1624 Bolt Specimen Results											
Threaded Rod ID # 12-V-E109											
LRA Job No.:	TYL130901	Structural Component: Tower Anchorage Anchor Bolts									
Rod#:	12-V-E109		(75 Dia. Anchor Bolts)								
Product Form:	1e	Comm	ents: Machined T	hreads: Same Gr	oun as Test Rig	g #6 in Test IV					
Rod OD:	3"	conn	comments. Machineu mileaus, same Group as rest Rig #o milest								
			$K_{threshold}$		86.6						
			DTI _{th}		0.54						
	MR 2, IHE	35.5	Fu		0.98						
			Strain Rate		2.5						
			(x10 ⁻⁸ in/in/sec)		2.5						
	MR 3, EHE		K _{threshold}			24.3					
		37.5	DTI _{th}			0.14					
eq			Fu			0.27					
ack			Strain Rate								
e-cr			(x10 ⁻⁸ in/in/sec)			4.1					
e Pr			K _{threshold}			27.6					
cigu	MR 5, EHE		DTI _{th}			0.17					
Fat		36.0	Fu			0.31					
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)			1.3					
			K _{max}	82.1							
			DTI _{th}	0.57							
	Center 1, FFS	31.5	Fu	0.93							
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)	8200							

K.4.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results											
Threaded Rod ID # 12-V-E109											
LRA Job No.:	Job No.: TYL130901 Structural Component: Tower Anchorage Anchor Bolts										
Rod#: 12-V-E109 (75 Dia. Anchor Bolts)											
Product Form:	1e	Comm	Commenter Machined Threader Same Crown as Test Dia #C in Test N/								
Rod OD:	3"	Comm	ients. Machineu h	lieaus, saine die	Sup as rest rig	#UIII TESLIV					
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE					
			Pmax* (lbs)	307.6							
	Thd 1, FFS		Fu	1.01							
		38.0	Rsb	1.4							
			Strain Rate	1600							
			(x10 ⁻⁸ in/in/sec)								
	Thd 3, EHE	37.5	P _{threshold} * (lbs)			209.2					
led			Fu			0.69					
eac			Hsr			1.0					
Thi			Strain Rate			2.2					
			(x10 ⁻⁸ in/in/sec)			2.3					
			P _{threshold} * (lbs)			218.5					
			Fu			0.72					
	Thd 5, EHE	37.5	Hsr			1.0					
			Strain Rate			1 1					
			(x10 ⁻⁸ in/in/sec)			1.1					

K.4.3 Summary Table

Caltrans 333 Burma Road, Oakland, CA 94607

K.5 Fatigue Pre-cracked Specimen Test Results

K.5.1 OD 1, FFS:

Figure K.5-1: Rod 12-V-E109 OD 1, Graphical FFS Results

Figure K.5-2: Fracture Face of Rod 12-V-E109 OD 1, FFS

K.5.2 OD 2, IHE:

Figure K.5-3: Rod 12-V-E109 OD 2, Graphical IHE Results

Figure K.5-4: Fracture Face of Rod 12-V-E109 OD 2, IHE

K.5.3 OD 3, EHE:

Figure K.5-5: Rod 12-V-E109 OD 3, Graphical EHE Results

Figure K.5-6: Fracture Face of Rod 12-V-E109 OD 3, EHE

K.5.4 OD 5, EHE:

Figure K.5-7: Rod 12-V-E109 OD 5, Graphical EHE Results

Figure K.5-8: Fracture Face of Rod 12-V-E109 OD 5, EHE

K.5.5 MR 1, FFS:

Figure K.5-9: Rod 12-V-E109 MR 1, Graphical FFS Results

Figure K.5-10: Fracture Face of Rod 12-V-E109 MR 1, FFS

K.5.6 MR 2, IHE:

Figure K.5-11: Rod 12-V-E109 MR 2, Graphical IHE Results

Figure K.5-12: Fracture Face of Rod 12-V-E109 MR 2, IHE

K.5.7 MR 3, EHE:

Figure K.5-13: Rod 12-V-E109 MR 3, Graphical EHE Results

Figure K.5-14: Fracture Face of Rod 12-V-E109 MR 3, EHE

K.5.8 MR 5, EHE:

Figure K.5-15: Rod 12-V-E109 MR 5, Graphical EHE Results

Figure K.5-16: Fracture Face of Rod 12-V-E109 MR 5, EHE

K.5.9 Center 1, FFS:

Figure K.5-17: Rod 12-V-E109 Center 1, Graphical FFS Results

Figure K.5-18: Fracture Face of Rod 12-V-E109 Center 1, FFS

K.6 Threaded Specimen Test Results

K.6.1 Thd 1, FFS:

Figure K.6-1: Rod 12-V-E109 Thd 1, Graphical FFS Results

Figure K.6-2: Rod 12-V-E109 Thd 1 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

K.6.2 Thd 3, EHE:

Figure K.6-3: Rod 12-V-E109 Thd 3, Graphical EHE Results

Figure K.6-4: Rod 12-V-E109 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

2) Mixed: Ductile Overload, Intergranular 1000X

Figure K.6-5: SEM of Rod 12-V-E109 Thd 3, EHE

1) Mixed: Ductile Overload, Intergranular 500X

3) Ductile Overload 1000X

K.6.3 Thd 5, EHE:

Figure K.6-6: Rod 12-V-E109 Thd 5 Graphical EHE Results

Figure K.6-7: Rod 12-V-E109 Thd 5 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face
Appendix L: Rod 18-V-1

L.1 Description of Sample

Rod 18-V-1 was a non-galvanized replacement rod manufactured in 2013 from the same heat of material that was tested in Test Rigs 16 and 17 in Test IV. It was made from 4340 steel to ASTM A354 Grade BD with additional requirements on hardness and CVN. The bolts are 3 inches in diameter with machined threads.

L.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 18-V-1 and can be seen versus time in **Figure L**.2-1. The final OCP recorded for Rod 18-V-1 was Vsce=-0.685 V.

Figure L.2-1: Open Circuit Potential for Rod 18-V-1

L.3 Hardness

The hardness data and profile for sample 18-V-1 are shown in Table L.3-1 and Figure L.3-1.

s /N	Hardness	Average
3/N	(HRC)	(HRC)
Center 1, FFS	33.5	33.5
MR 1, FFS	35.5	
MR 3, EHE	35.5	35.2
MR 4, EHE	34.5	
OD 1, FFS	35.5	
OD 3, EHE	35.0	
OD 4, EHE	35.5	
Thd 1, FFS	35.5	35.4
Thd 2, IHE	35.5	
Thd 3, EHE	35.5	
Thd 4, EHE	35.5	

Table L.3-1: Hardness Data of Rod 18-V-1 Specimen

Figure L.3-1: Hardness Profile of Rod 18-V-1

L.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

L.4.1 Fatigue Pre-crack Results

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID #18-V-1												
LRA Job No.:	TYL130901	TYL130901 Structural Component: Pier E2										
Rod#:	18-V-1		Commonte: Non Columnized, 2012 Mashined Threed									
Product Form:	1e		Comments: Non-Galvanized; 2013 Machined Threads									
Rod OD:	3		Same Heat as Test Rigs #16 and 17 in Test IV									
	Sample #/ID	HKC		K-FFS	K-IHE	K-EHE						
			K _{max}	91.1								
			DTI _{th}	0.57								
	OD 1, FFS	35.5	Fu	1.03								
			Strain Rate	7700								
			(x10 ⁻⁸ in/in/sec)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
			K _{threshold}			44.6						
			DTI _{th}			0.28						
	OD 3, EHE	35.0	Fu			0.50						
			Strain Rate			2.2						
			(x10 ⁻⁸ in/in/sec)			2.2						
			K _{threshold}			42.9						
			DTI _{th}			0.27						
OD 4, EHI 맞	OD 4, EHE	35.5	Fu			0.48						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.8						
			K K	22.2								
crac				0.56								
re-	MR 1 FFS	35 5	Eu	1.00								
ue F	WIK 1, FFS	00.0	Strain Rate	1.00								
atig			$(x10^{-8} in/in/sec)$	8000								
μ			K			43.2						
			'`threshold			0.27						
	MR3 FHF	35 5	Dil _{th}			0.27						
	WIN 3, EITE	55.5	FU Strain Rata			0.49						
			$(v 10^{-8} in / in / occ)$			2.1						
			(X10 In/In/Sec)			17.0						
			Kthreshold			47.9						
		24 5	DTI _{th}			0.31						
	IVIR 4, EFIE	34.5	Fu			0.54						
			Strain Rate			1.9						
			(x10 ⁻ in/in/sec)	04.0								
			K _{max}	84.9								
	.		DTI _{th}	0.56								
	Center 1, FFS	33.5	Fu	0.96								
			Strain Rate	8400								
			(x10 ^{-*} in/in/sec)									

L.4.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 18-V-1												
LRA Job No.:	TYL130901	Structural Component: Pier F2										
Rod#:	18-V-1											
Product Form:	1e		Comments: Non-Galvanized; 2013 Machined Threads									
Rod OD:	3"		Same Heat as	s Test Rigs #16 an	d 17 in Test IV	,						
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE						
			Pmax* (lbs)	343.0								
			Fu	1.13								
	Thd 1, FFS	35.5	Rsb	1.6								
			Strain Rate	1800								
			(x10 ⁻⁸ in/in/sec)	1800								
	Thd 2, IHE		P _{threshold} * (lbs)		340.6							
			Fu		1.12							
		35.5	Hsr		1.5							
-			Strain Rate									
adeo			(x10 ⁻⁸ in/in/sec)		1.0							
Jrea			P _{threshold} * (lbs)			314.5						
F			Fu			1.04						
	Thd 3, EHE	35.5	Hsr			1.4						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.1						
			P _{threshold} * (lbs)			313.8						
			Fu			1.03						
	Thd 4, EHE	35.5	Hsr			1.4						
	ind 4, Enc		Strain Rate									
			(x10 ⁻⁸ in/in/sec)			0.5						

Comments

3

P* (Ibs)

0.50 0.48 1.00

.03

Cracked in Holiday

1.04

314.5 340.6

0.49 0.54 0.96

1.13 1.12

343.0

4 in/min

13/5/1,16 313.8 1.03 No Holiday

N/A

N/A

0.5

1.4

226.7

0.57

91.5

91.5%

317.8

323.0

265.7

159

35.5

3.5% NaCl @ -1.106V

Thd 4, EHE

Summary Table of Test V ASTM F1624 Bolt Specimen Results Theoaded Bood וה איז פי עי ז

Caltrans

Caltrans 333 Burma Road, Oakland, CA 94607

L.5 Fatigue Pre-cracked Specimen Test Results

L.5.1 OD 1, FFS:

Figure L.5-1: Rod 18-V-1 OD 1, Graphical FFS Results

Figure L.5-2: Fracture Face of Rod 18-V-1 OD 1, FFS

LRA@LouRaymond.com Phone: 949 474-0218

L.5.2 OD 3, EHE:

Figure L.5-3: Rod 18-V-1 OD 3, Graphical EHE Results

Figure L.5-4: Fracture Face of Rod 18-V-1 OD 3, EHE

L.5.3 OD 4, EHE:

Figure L.5-5: Rod 18-V-1 OD 4, Graphical EHE Results

Figure L.5-6: Fracture Face of Rod 18-V-1 OD 4, EHE

L.5.4 MR 1, FFS:

Figure L.5-7: Rod 18-V-1 MR 1, Graphical FFS Results

Figure L.5-8: Fracture Face of Rod 18-V-1 MR 1, FFS

L.5.5 MR 3, EHE:

Figure L.5-9: Rod 18-V-1 MR 3, Graphical EHE Results

Figure L.5-10: Fracture Face of Rod 18-V-1 MR 3, EHE

L.5.6 MR 4, EHE:

Figure L.5-11: Rod 18-V-1 MR 4, Graphical EHE Results

Figure L.5-12: Fracture Face of Rod 18-V-1 MR 4, EHE

L.5.7 Center 1, FFS:

Figure L.5-13: Rod 18-V-1 Center 1, Graphical FFS Results

Figure L.5-14: Fracture Face of Rod 18-V-1 Center 1, FFS

L.6 Threaded Specimen Test Results

L.6.1 Thd 1, FFS:

Figure L.6-1: Rod 18-V-1 Thd 1, Graphical FFS Results

Figure L.6-2: Rod 18-V-1 Thd 1 FFS Fracture Face

LRA@LouRaymond.com Phone: 949 474-0218

L.6.2 Thd 2, IHE:

Figure L.6-3: Rod 18-V-1 Thd 2, Graphical IHE Results

Figure L.6-4: Rod 18-V-1 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

Caltrans 333 Burma Road, Oakland, CA 94607

L.6.3 Thd 3, EHE:

Figure L.6-5: Rod 18-V-1 Thd 3 Graphical EHE Results

Figure L.6-6: Rod 18-V-1 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Caltrans 333 Burma Road, Oakland, CA 94607

L.6.4 Thd 4, EHE:

Figure L.6-7: Rod 18-V-1 Thd 4 Graphical EHE Results

Figure L.6-8: Rod 18-V-1 Thd 4 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Appendix M: Rod 18-V-2

M.1 Description of Sample

Rod 18-V-2 was a galvanized replacement rod manufactured in 2013 from the same heat of material that was tested in Test Rigs 14, 15, 16 and 17 in Test IV. It was made from 4340 steel to ASTM A354 Grade BD with additional requirements on hardness and CVN. The bolts are 3 inches in diameter with machined threads.

M.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 18-V-2 and can be seen versus time in **Figure M**.2-1. The final OCP recorded for Rod 18-V-2 was Vsce = -1.021 V.

Figure M.2-1: Open Circuit Potential for Rod 18-V-2

M.3 Hardness

The hardness data and profile for sample 18-V-2 are shown in Table M.3-1 and Figure M.3-1.

s/N	Hardness	Average
5/19	(HRC)	(HRC)
Center 1, FFS	33.0	33.0
MR 1, FFS	35.0	
MR 3, EHE	35.0	34.7
MR 4, EHE	34.0	
OD 1, FFS	35.0	
OD 3, EHE	35.5	
OD 4, EHE	36.0	
Thd 1, FFS	35.5	35.5
Thd 2, IHE	35.5	
Thd 3, EHE	35.5	
Thd 4, EHE	35.5	

Table M.3-1: Hardness Data of Rod 18-V-2 Specimen

Figure M.3-1: Hardness Profile of Rod 18-V-2

M.4 Summary

Detailed data are listed in the summary table. The results from this table are summarized in "checker board" tables.

M.4.1 Fatigue Pre-crack Results:

Test V ASTM F1624 Bolt Specimen Results												
Threaded Rod ID # 18-V-2												
LRA Job No.:	TYL130901		Structural Component: Pier E2									
Rod#:	18-V-2		•									
Product Form:	1e		Comments: Galvanized; 2013 Machined Threads									
KOO UD:	3 Sample #/ID	LIDC	Same Heat	as lest Rigs #14 al								
	Sample #/ID	TINC	V	K-FF3	K-INC	K-ERE						
			к _{max}	91.4								
		25.0	DII _{th}	0.58								
	OD 1, FFS	35.0	Fu	1.03								
			Strain Rate	7800								
			(x10 ^{°°} in/in/sec)									
			K _{threshold}			42.7						
			DTI _{th}			0.27						
	OD 3, EHE	35.5	Fu			0.48						
			Strain Rate			2.1						
			(x10 ^{°°} in/in/sec)									
			K _{threshold}			44.1						
			DTI _{th}			0.27						
	OD 4, EHE	36.0	Fu			0.50						
			Strain Rate			1.8						
σ			(x10 ⁻⁸ in/in/sec)			1.0						
acke			K _{max}	88.5								
-cra			DTI _{th}	0.56								
Pre	MR 1, FFS	35.0	Fu	1.00								
gue			Strain Rate	0000								
Fati			(x10 ⁻⁸ in/in/sec)	8000								
_			K _{threshold}			44.4						
			DTI _{th}			0.28						
	MR 3, EHE	35.0	Fu			0.50						
			Strain Rate			2.2						
			(x10 ⁻⁸ in/in/sec)			2.2						
			K _{threshold}			49.6						
			DTI _{th}			0.32						
	MR 4, EHE	34.0	Fu			0.56						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.8						
			K _{max}	87.0								
			DTI _{th}	0.58								
	Center 1, FFS	33.0	Fu	0.98								
			Strain Rate	0400								
			(x10 ⁻⁸ in/in/sec)	8400								

M.4.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results											
Ihreaded Rod ID # 18-V-2											
LRA Job No.:	TYL130901	Structural Component: Pier E2									
Rod#:	18-V-2			·							
Product Form:	1e		Comments: Gal	lvanized; 2013 M	achined Threa	ds					
Rod OD:	3"		Same Heat as	s Test Rigs #14 an	d 15 in Test IV						
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE					
			Pmax* (lbs)	332.0							
			Fu	1.09							
	Thd 1, FFS	35.5	Rsb	1.5							
			Strain Rate	1000							
			(x10 ⁻⁸ in/in/sec)	1800							
			P _{threshold} * (lbs)		334.0						
			Fu		1.10						
	Thd 2, IHE	35.5	Hsr		1.5						
σ			Strain Rate								
ade			(x10 ⁻⁸ in/in/sec)		1.0						
hre			P _{threshold} * (lbs)			300.8					
F			Fu			0.99					
	Thd 3, EHE	35.5	Hsr			1.4					
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)			1.0					
			P _{threshold} * (lbs)			297.3					
			Fu			0.98					
	Thd 4, EHE	35.5	Hsr			1.3					
	-		Strain Rate								
			(x10 ⁻⁸ in/in/sec)			0.5					

				Commonte	comments						stiffness shows	hreshold as one	eplower - WRC				Cracked in	Holiday	Cracked in	Holiday
						.03	.48	.50	00.	.50	S	.56 tł	st	.98	60.	.10	οo)).	00	oc.
				P*	bs)	1	0	0	1	0		0		0	32.0 1	34.0 1	0 8 00		0 2 20	2
				Step Load	Profile (I	50lb/min	10/5/2,4	10/5/2,4	50lb/min	10/5/2,4		10/5/2,4		50lb/min	0.4 in/min 3	10/5/1,8 3	10/5/1 8 3	0 0'T /c /0T	13/5/1 16 2	
				Klctod	(ksiVin)	149.6			149.0					146.8	N/A	N/A	N/A		N/A	۲ /N
				в	(in)	0.2121	0.2102	0.2100	0.2131					0.2148	N/A	N/A	N / A		N / A	۲/M
				δ£/δ t	(10 ⁻⁸ s ⁻¹)	0082	2.1	1.8	8000	2.2		1.8		8400	1800	1	٢	+	50	1 5
				Deb Herb	кѕо, пъго	2.0	0.9	0.9	1.9	1.0		1.1		2.0	1.5	1.5	1 1		1 3	r i
				σnet	(ksi)	311.5	144.6	150.1	301.5	152.4		166.5		296.0	239.6	238.3	215 4	1.017	0 21 C	C.CT2
				Ш	(vin)	0.58	0.27	0.27	0.56	0.28		0.32		0.58	0.61	0.61	0 בב	00.0	0 54	5.0
				Kmax, Klscc,	KI p-eне (ksivin)	91.4	42.7	44.1	88.5	44.4		49.6		87.0	96.8	97.4	87 7		86.7	00.7
				%FS	(Pth/Pmax)	100.0%	46.7%	48.2%	100.0%	50.2%		56.0%		100.0%	100.0%	100.6%	90 6%		%9 US	0.0.00
				Pmax, Pth	(Ibs)	100.6	47.9	49.3	97.3	47.8		57.0		96.1	336.7	351.7	316 G	C.01C	30/1 8	o.+0c
				Pmax	(Ibs)	100.6	57.0	57.2	97.3	57.0		65.1		96.1	336.7	351.7	<i>د</i> ٦٤٤	1.000	0 762	0.420
				Ptarget	(Ibs)	100.6	60.0	52.0	97.3	60.0		52.0		96.1	336.7	266.7	7667	£00.7	0.070	210.0
				UTS	(ksi)	157	159	162	157	157		153		149	159	159	150		150	LUT
				Hardness	(HRC)	35.0	35.5	36.0	35.0	35.0		34.0		33.0	35.5	35.5	35 E		3 C C	
TYL130901	18-V-2	1e	3"		Environment	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V		3.5% NaCl @ -1.106V		Air	Air	Air	3 5% NaCl @ -1 106V		3 5% NaCl @ -1 106V	2.2.70 INACI ლ - エ・ハッマ
LRA Job No.:	Rod #:	Product Form:	Rod OD:	14/ S	N/C	OD 1, FFS	OD 3, EHE	OD 4, EHE	MR 1, FFS	MR 3, EHE		MR 4, EHE		Center 1, FFS	Thd 1, FFS	Thd 2, IHE	тьаз ЕнЕ	1110 27 21 12	тьал вне	1110 4 [,] L11L
		Fatigue Pre-cracked										р	əpe	рıę	L					

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 18-V-2 RSL¹⁴ (B) 4-pt Bend Test

M.4.3 Summary Table:

M.5 Fatigue Pre-cracked Specimen Test Results

M.5.1 OD 1, FFS:

Figure M.5-1: Rod 18-V-2 OD 1, Graphical FFS Results

Figure M.5-2: Fracture Face of Rod 18-V-2 OD 1, FFS

M.5.2 OD 3, EHE:

Figure M.5-3: Rod 18-V-2 OD 3, Graphical EHE Results

Figure M.5-4: Fracture Face of Rod 18-V-2 OD 3, EHE

Figure M.5-5: Rod 18-V-2 OD 4, Graphical EHE Results

Figure M.5-6: Fracture Face of Rod 18-V-2 OD 4, EHE

M.5.4 MR 1, FFS:

Figure M.5-7: Rod 18-V-2 MR 1, Graphical FFS Results

Figure M.5-8: Fracture Face of Rod 18-V-2 MR 1, FFS

Figure M.5-9: Rod 18-V-2 MR 3, Graphical EHE Results

Figure M.5-10: Fracture Face of Rod 18-V-2 MR 3, EHE

M.5.6 MR 4, EHE:

Figure M.5-11: Rod 18-V-2 MR 4, Graphical EHE Results

Figure M.5-12: Fracture Face of Rod 18-V-2 MR 4, EHE

Figure M.5-13: Rod 18-V-2 Center 1, Graphical FFS Results

Figure M.5-14: Fracture Face of Rod 18-V-2 Center 1, FFS

M.6 Threaded Specimen Test Results

M.6.1 Thd 1, FFS:

Figure M.6-1: Rod 18-V-2 Thd 1, Graphical FFS Results

Figure M.6-2: Rod 18-V-2 Thd 1 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

Page 310

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Figure M.6-3: Rod 18-V-2 Thd 2, Graphical IHE Results

Figure M.6-4: Rod 18-V-2 Thd 2 a) Thread Root from Side and Normal Views Post IHE Test and b) IHE Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Figure M.6-5: Rod 18-V-2 Thd 3 Graphical EHE Results

Figure M.6-6: Rod 18-V-2 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure M.6-7: Rod 18-V-2 Thd 4 Graphical EHE Results

Figure M.6-8: Rod 18-V-2 Thd 4 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Appendix N: Rod 7-V-E012

N.1 Description of Sample

Rod 7-V-E012 was a PWS Strand Anchor Rod located at the anchorage location above Pier E2 from the same heat of rod as Test Rigs #9 and #10 in tested in Test IV and Rod 7-V-E027 in Test V. It was made from 4140 steel to ASTM A354 Grade BD. Rod 7-V-E012 is 3.5 inches in diameter with machined threads. The segment from one of the rod pieces provided to LRA is shown in **Figure N.1-1**.

Figure N.1-1: Pier E2 Anchorage PWS Strand Anchor, Rod 7-V-E012

N.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 7-V-E012 and can be seen versus time in **Figure N**.2-1. The final OCP recorded for Rod 7-V-E012 was Vsce=-0.940 V.

Figure N.2-1: Open Circuit Potential for Rod 7-V-E012

N.3 Hardness

The hardness data and profile for sample 7-V-E012 are shown in Table N.3-1 and Figure N.3-1.

S /N	Hardness	Average
3/ N	(HRC)	(HRC)
Center 1, FFS	28.5	28.5
MR 1, FFS	32.5	
MR 3, EHE	34.0	33.3
MR 4, EHE	33.5	
OD 1, FFS	38.0	
OD 3, EHE	38.0	
OD 4, EHE	37.5	
Thd 1, FFS	38.0	37.9
Thd 4, EHE	38.5	
Thd 7, EHE	38.0	
Thd 8, EHE	37.5	

Table N.3-1: Hardness Data of Rod 7-V-E012 Specimen

Figure N.3-1: Hardness Profile of Rod 7-V-E012

Caltrans 333 Burma Road, Oakland, CA 94607

N.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

N.4.1 Fatigue Pre-crack Results

Test V ASTM F1624 Bolt Specimen Results											
IBA Joh No :	TVI 130901	me		-1012							
Rod#:	7-V-E012	Str	Structural Component: PWS Strand Anchor Rods (Main Cable)								
Product Form:	1e	Comments: 2010 Machined Threads									
Rod OD:	3.5"	Same Heat of Rod as Test Rigs #9 and #10 in Test IV									
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE					
			K _{max}	87.0							
			DTI _{th}	0.51							
	OD 1, FFS	38.0	Fu	0.96							
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)	8300							
			K _{threshold}			20.5					
			DTI _{th}			0.12					
	OD 3, EHE	38.0	Fu			0.23					
			Strain Rate			4 5					
			(x10 ⁻⁸ in/in/sec)			4.5					
			K _{threshold}			21.1					
			DTI _{th}			0.12					
	OD 4, EHE	37.5	Fu			0.23					
			Strain Rate			0.9					
p			(x10 ⁻⁸ in/in/sec)			0.5					
acke			K _{max}	78.6							
e-cr			DTI _{th}	0.54							
e Pr	MR 1, FFS	32.5	Fu	0.87							
igue			Strain Rate	8000							
Fat			(x10 ^{-∞} in/in/sec)								
			K _{threshold}			28.4					
			DTI _{th}			0.19					
	MIR 3, EHE	34.0	Fu Churcin Data			0.31					
			Strain Rate			1.9					
			(x10° in/in/sec)			22.0					
			K _{threshold}			32.6					
		22 E	DTI _{th}			0.22					
	IVIN 4, CHE	55.5	FU Strain Pato			0.30					
			$(v_10^{-8} in/in/coc)$			1.3					
			K	77.6							
				0.59							
	Center 1. FFS	28.5	Fu	0.86							
	2,		Strain Rate	0.00							
			(x10 ⁻⁸ in/in/sec)	8200							

N.4.2 Threaded Results

Test V ASTM F1624 Bolt Specimen Results																			
LRA Job No.:	Structural Component: PWS Strand Anchor Rods (Main Cable)																		
Rod#:	7-V-E012																		
Product Form:	1e		Commei	nts: 2010 Machin	ed Threads														
Rod OD:	3.5"		Same Heat of Ro	od as Test Rigs #9	and #10 in Te	st IV													
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE													
			Pmax* (lbs)	367.7															
			Fu	1.19															
	Thd 1, FFS	38.0	Rsb	1.5															
			Strain Rate	2050															
			(x10 ⁻⁸ in/in/sec)	2950															
			P _{threshold} * (lbs)			194.1													
	Thd 4, EHE		Fu			0.63													
		38.5	Hsr			0.8													
q			Strain Rate			2.0													
ade			(x10 ⁻⁸ in/in/sec)			2.0													
hre			P _{threshold} * (lbs)			196.5													
F			Fu			0.63													
	Thd 7, EHE	38.0	Hsr			0.8													
			Strain Rate			. –													
			(x10 ⁻⁸ in/in/sec)			1.7													
			P _{threshold} * (lbs)			178.7													
			Fu			0.58													
	Thd 8, EHE	37.5	Hsr			0.8													
	-		Strain Rate																
			(x10 ⁻⁸ in/in/sec)			1.5													
	Fatigue Pre-cracked							я		I	pəj	peə	лЧТ						
-----------------	---------------------	----------	---------------	---------	--	------------	---------------------	---------------------	------------	---------------------	---------------------	---------------	------------	---------------------	---------------------	---	----------------------	--------------------	---------------------
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	N/S	OD 1, FFS	OD 3, EHE	OD 4, EHE	MR 1, FFS	MR 3, EHE	MR 4, EHE	Center 1, FFS	Thd 1, FFS	тыди ЕНЕ	1110 4, LI L	1111 E F F F	100 /, ЕПЕ	That 0 FLIF	IIIU 0, ENE
	TYL130523	7-V-E012	1e	3.5"	Environment	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3 5% NaCl @ -1 106/	2:2/8 NACI @ -1:100	2 E0/ N=CI @ 1 100/	vout.t- كا الما %c.s	2 EV Nord @ 1 1007	VUULT- 꿱 IJbNI %C.C
					Hardness (HRC)	38.0	38.0	37.5	32.5	34.0	33.5	28.5	38.0	38 C	0.00	0 00	38.U	7 5	c./c
					UTS I (ksi)	172	172	169	147	153	151	133	172	174	1/1	j	7/7	100	COT
					Ptarget (Ibs)	97.3	68.0	26.0	89.6	60.0	36.0	86.4	378.8	0 010	0.647		0.UI2	. 0.001	N'NOT
					Pmax F (Ibs)	97.3	30.6	27.3	89.6	45.0	48.6	86.4	378.8	311 4	1.110	1 000	c.U22	0 00 1	102.U
					max, Pth (lbs)	97.3	23.7	23.3	89.6	32.9	35.9	86.4	378.8	108 5	C.0CT	100 0	1.70.0	1 70 5	C.6/T
RSL™ (l					%FS (Pth/Pmax)	100.0%	23.6%	24.3%	100.0%	36.1%	41.5%	100.0%	100.0%	E7 8%	0/0.70	70, 70/	%C.5C	40.60/	40.0%
3) 4-pt Bend Te					Kmax, Klscc, Klp-EHE (ksivin)	87.0	20.5	21.1	78.6	28.4	32.6	77.6	107.2	сс с	0.00		£./C	1 5 1	T-7C
st					DTI (vin)	0.51	0.12	0.12	0.54	0.19	0.22	0.59	0.62	0 37	70.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.33	10.0	TC'N
					G net (ksi)	295.5	69.0	71.8	265.4	95.5	111.4	263.9	264.7	1 10 1	140.1	0,00,0	142.U	1 20 6	0.021
					Rsb, Hsrb	1.7	0.4	0.4	1.8	0.6	0.7	2.0	1.5	80	0.0	00	0.8	0	0.0
					δ£/δt (10 ⁻⁸ s ⁻¹)	8300	4.5	0.9	8000	1.9	1.3	8200	2950	0 0	0.4	1	т./	Ļ	Ω.
					a (in)	0.2110	0.2068	0.2111	0.2096	0.2077	0.2130	0.2126	N/A	N/N		V 1 V	N/A	N1 / N	۲/N
					Klctod (ksiVin)	138.3			161.4			152.0							
					Step Load Profile	50 lbs/min	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	50 lbs/min	0.4 in/min	10/5/2/1	+'7/c/or	10101	4,2 /c /UL	10/2/01	+,4 /c /UL
					P* (Ibs)		_	_	_	_	_		367.7	10/1	T.#CT	100	C.071	1 70 7	T/0./
					Ŀ	0.96	0.23	0.23	0.87	0.31	0.36	0.86	1.19	0.63	0.0	, C ,	U.03	010	00.0
					Comments									Did not crack	in Holiday.	Did not crack	in Holiday.	Did not crack	in Holiday.

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 7-V-E012

Caltrans

N.4.3 Summary Table

N.5 Fatigue Pre-cracked Specimen Test Results

N.5.1 OD 1, FFS:

Figure N.5-1: Rod 7-V-E012 OD 1, Graphical FFS Results

Figure N.5-2: Fracture Face of Rod 7-V-E012 OD 1, FFS

N.5.2 OD 3, EHE:

Figure N.5-3: Rod 7-V-E012 OD 3, Graphical EHE Results

Figure N.5-4: Fracture Face of Rod 7-V-E012 OD 3, EHE

Figure N.5-5: Rod 7-V-E012 OD 4, Graphical EHE Results

Figure N.5-6: Fracture Face of Rod 7-V-E012 OD 4, EHE

N.5.4 MR 1, FFS:

Figure N.5-7: Rod 7-V-E012 MR 1, Graphical FFS Results

Figure N.5-8: Fracture Face of Rod 7-V-E012 MR 1, FFS

N.5.5 MR 3, EHE:

Figure N.5-9: Rod 7-V-E012 MR 3, Graphical EHE Results

Figure N.5-10: Fracture Face of Rod 7-V-E012 MR 3, EHE

N.5.6 MR 4, EHE:

Figure N.5-11: Rod 7-V-E012 MR 4, Graphical EHE Results

Figure N.5-12: Fracture Face of Rod 7-V-E012 MR 4, EHE

N.5.7 Center 1, FFS:

Figure N.5-13: Rod 7-V-E012 Center 1, Graphical FFS Results

Figure N.5-14: Fracture Face of Rod 7-V-E012 Center 1, FFS

N.6 Threaded Specimen Test Results

N.6.1 Thd 1, FFS:

Figure N.6-1: Rod 7-V-E012 Thd 1, Graphical FFS Results

Figure N.6-2: Rod 7-V-E012 Thd 1 a)Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Figure N.6-3: Rod 7-V-E012 Thd 4, Graphical EHE Results

Figure N.6-4: Rod 7-V-E012 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure N.6-5: Rod 7-V-E012 Thd 7, Graphical EHE Results

Figure N.6-6: Rod 7-V-E012 Thd 7 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Figure N.6-7: Rod 7-V-E012 Thd 8, Graphical EHE Results

Figure N.6-8: Rod 7-V-E012 Thd 8 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix O: Rod 7-V-E027

O.1 Description of Sample

Rod 7-V-E027 was a PWS Strand Anchor Rod located at the anchorage location above Pier E2 from the same heat of rod as Test Rigs #9 and #10 tested in Test IV and Rod 7-V-E012 in Test V. It was made from 4140 steel to ASTM A354 Grade BD. Rod 7-V-E027 is 3.5 inches in diameter with rolled threads. The segment from one of the rod pieces provided to LRA is shown in **Figure 0.1-1**.

Figure O.1-1: Pier E2 Anchorage PWS Strand Anchor, Rod 7-V-E027

O.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 7-V-E027 and can be seen versus time in **Figure 0**.2-1. The final OCP recorded for Rod 7-V-E027 was Vsce=-0.919 V.

Figure O.2-1: Open Circuit Potential for Rod 7-V-E027

O.3 Hardness

The hardness data and profile for sample 7-V-E027 are shown in **Table 0.3-1** and **Figure 0.3-1**.

S/N	Hardness	Average
3711	(HRC)	(HRC)
Center 1, FFS	29.0	29.0
MR 1, FFS	32.5	
MR 3, EHE	31.5	21.0
MR 5, EHE	32.5	51.5
MR 6, EHE	31.0	
OD 1, FFS	36.0	
OD 3, EHE	36.0	
OD 4, EHE	36.5	
OD 5, EHE	36.5	36.3
Thd 1, FFS	36.5	30.3
Thd 3, EHE	36.5	
Thd 6, EHE	36.5	
Thd 7, EHE	36.0	

Table O.3-1: Hardness Data of Rod 7-V-E027 Specimen

Figure O.3-1: Hardness Profile of Rod 7-V-E027

O.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

O.4.1 Fatigue Pre-crack Results:

Test V ASTM F1624 Bolt Specimen Results										
Threaded Rod ID # 7-V-E027										
LRA Job No.: TYL130901 Structural Component: PWS Strand Anchor Rods (Ma										
Rod#:	an cable)									
Product Form:	1e		Comments: 2010 Rolled Threads, Heat OTD							
Rod OD:	3.5"		Same Heat of Rod as Test Rigs #9 and #10 in Tes							
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE				
			K _{max}	87.0						
			DTI _{th}	0.54						
	OD 1, FFS	36.0	Fu	0.96						
			Strain Rate							
			(x10 ⁻⁸ in/in/sec)	8200						
			K _{threshold}			72.7				
			DTI _{th}			0.45				
	OD 3, EHE	36.0	Fu			0.81				
			Strain Rate							
			(x10 ⁻⁸ in/in/sec)			2.2				
ked			K _{threshold}			24.0				
crac			DTI _{th}			0.15				
re-o	OD 4, EHE	36.5	Fu			0.27				
le P			Strain Rate							
tigu			$(x10^{-8} in/in/sec)$			1.4				
Fa			K			26.1				
			threshold ידר			20.1				
		20 5	ר די			0.16				
	OD 5, EHE	30.5	FU			0.29				
			Strain Rate			0.89				
		<u> </u>	(x10 ^{-°} in/in/sec)							
			K _{max}	79.5						
			DTI _{th}	0.54						
	MR 1, FFS	32.5	Fu	0.88						
			Strain Rate	8200						
			(x10 ⁻⁸ in/in/sec)	6200						

Test V ASTM F1624 Bolt Specimen Results											
	Threaded Rod ID # 7-V-E027										
LRA Job No.:	TYL130901	Str	uctural Componer	tural Component: DW/S Strand Anchor Dods (Main Coble)							
Rod#:	7-V-E027	Structural Component: PWS Strand Anchor Rous (Main Cable)									
Product Form:	1e		D								
Rod OD:	3.5"	Same Heat of Rod as Test Rigs #9 and #10 in Test IV									
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE					
			$K_{threshold}$			34.9					
			DTI _{th}			0.24					
	MR 3, EHE	31.5	Fu			0.39					
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)			2.1					
			Kuburahald			35.6					
			DTL.			0.24					
σ	MR5 FHF	32 5	Eu			0.24					
cke	Will 3, Elle	52.5	i u Strain Pato			0.35					
cra						1.5					
Pre-			(x10° in/in/sec)								
e F			$K_{threshold}$			34.4					
Itigu			DTI _{th}			0.24					
Еа	MR 6, EHE	31.0	Fu			0.38					
			Strain Rate			1 1					
			(x10 ⁻⁸ in/in/sec)			1.1					
			K _{max}	76.1							
			DTI _{th}	0.57							
	Center 1, FFS	29.0	Fu	0.84							
	-		Strain Rate								
			(x10 ⁻⁸ in/in/sec)	8300							

O.4.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results												
	Threaded Rod ID # 7-V-E027											
LRA Job No.: TYL130901 Structural Component: PWS Strand Anchor Rods (Main C												
Rod#:	7-V-E027											
Product Form:	1e	Comments: 2010 Rolled Threads, Heat OTD										
Rod OD:	3.5"		Same Heat of Rod as Test Rigs #9 and #10 in Test IV									
	Sample #/ID	ID HRC P-FFS P-IHE										
			Pmax* (lbs)	349.5								
			Fu	1.13								
	Thd 1, FFS	36.5	Rsb	1.5								
			Strain Rate	2000								
			(x10 ⁻⁸ in/in/sec)	3000								
			P _{threshold} * (lbs)			304.2						
			Fu			0.98						
	Thd 3, EHE	36.5	Hsr			1.3						
ъ			Strain Rate									
adeo			(x10 ⁻⁸ in/in/sec)			2.4						
hrea			P _{threshold} * (Ibs)			223.3						
F			Fu			0.72						
	Thd 6, EHE	36.5	Hsr			1.0						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.5						
			P _{threshold} * (lbs)			235.6						
			Fu			0.76						
	Thd 7. EHE	36.0	Hsr			1.0						
	· ,		Strain Rate									
			(x10 ⁻⁸ in/in/sec)			0.7						

O.4.3 Summary Table

IdP JOBODI TY130001 Rolut 10: Y*6027 Production: J Production: J J Production: J J J J Production: J J J J J J J J J J J J J J J J J J J J J J J						COMMENTS		cation occurri t Crack Root									id not crack ally in Holida	id not crack in Holiday	id not crack in Holiday												
ICM JOING: NTJ3901 ICM JOING: TY 13901 Product Form ICM JOING: NTJ3901 Product Form ICM JOING: NTJ3901 Product Form ICM JOING: ICM JOING: NT Product Form JOING JOING <th cols<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Bifure at</th><th>2</th><th>6</th><th>~</th><th>6</th><th>6</th><th>~</th><th>_</th><th>~</th><th>s D initi</th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Bifure at</th> <th>2</th> <th>6</th> <th>~</th> <th>6</th> <th>6</th> <th>~</th> <th>_</th> <th>~</th> <th>s D initi</th> <th></th> <th></th>								Bifure at	2	6	~	6	6	~	_	~	s D initi													
IPAU30001 PAU30001 Store Jack store <th <="" colspan="12" th=""><th></th><th></th><th></th><th></th><th>č</th><th>()</th><th>0.96</th><th>0.8</th><th>0.27</th><th>0.20</th><th>0.8</th><th>0.39</th><th>0.3</th><th>0.38</th><th>0.8</th><th>.5 1.13</th><th>.2 0.98</th><th>.3 0.72</th><th>.6 0.76</th></th>	<th></th> <th></th> <th></th> <th></th> <th>č</th> <th>()</th> <th>0.96</th> <th>0.8</th> <th>0.27</th> <th>0.20</th> <th>0.8</th> <th>0.39</th> <th>0.3</th> <th>0.38</th> <th>0.8</th> <th>.5 1.13</th> <th>.2 0.98</th> <th>.3 0.72</th> <th>.6 0.76</th>																č	()	0.96	0.8	0.27	0.20	0.8	0.39	0.3	0.38	0.8	.5 1.13	.2 0.98	.3 0.72	.6 0.76
IRAUGNOL: TM130601 Fold:: 7.4027 Fold:: 7.4027 Fold:: 7.4027 Fold:: 7.4027 Fold:: Fold:: <th <<="" colspan="12" th=""><th colspan="3">a a) P</th><th>u</th><th></th><th>t</th><th>t</th><th>Ľ</th><th>t</th><th>t</th><th>Ħ</th><th>u</th><th>n 349</th><th>t 304</th><th>t 223</th><th>3 235</th></th>	<th colspan="3">a a) P</th> <th>u</th> <th></th> <th>t</th> <th>t</th> <th>Ľ</th> <th>t</th> <th>t</th> <th>Ħ</th> <th>u</th> <th>n 349</th> <th>t 304</th> <th>t 223</th> <th>3 235</th>												a a) P			u		t	t	Ľ	t	t	Ħ	u	n 349	t 304	t 223	3 235			
Image:					Step Loa	Profile	501bs/mi	10/5/2,4	10/5/2,4	10/5/2,4	501bs/mi	10/5/2,4	10/5/2,4	10/5/2,4	501bs/m	0.4 in/mi	10/5/2,4	10/5/2,4	10/5/1,8												
LKA LOB MOL: TV130001 Rod #: 7-V-6027 Rod UC form: 8 Rod UC form: 8 Rod UC form: 8 Rod UC form: 8 9 Rod UC form: 8 9 8 9 9 9 Rod UC form: Benitronment 100 8 100 6 6 6 6 6 6 6 6 6 100 10					Klctod	(ksiVin)	143.9				149.2				142.3																
LRA Job No.: TV L 30001 Rold:: TV-L 3001 Rold:: TV-FE027 Brout: TV-FE027 Brout: S.V. Brout: S.V. Brout: S.V. Brout: S.V. Brout: S.V. Markins, Max, Misc, Dr On S6/Kt Brout: S.V. Brout: Markins, Max, Misc, DI On S6/Kt Job Environment Bernorment Bern					в	(in)	0.2083	0.2082	0.2139	0.2079	0.2102	0.214	0.2184	0.2163	0.2105	N/A	N/A	N/A	N/A												
IRA JOD NOL: TV13001 Rold if: 7v-E027 Product Form: 1 Rold if: 8 Max, Nixe, Dr Max, Nixe, Rold if: 8 Party Product 8 100.0% 8 0 18 0 Rold if: 8 Party Party Max, Nixe, Dr Max, Nixe, Dr Max, Nixe, OD 1, FF3 Environment Harch (8) 10 8 100.0% 8 10 64 80. Harch OD 3, EHE 35% Nact (@-1106V 365 164 80.1 100.0% 82.2 101 15 15 OD 4, EHE 35% Nact (@-1106V 365 164 80.1 100.0% 82.9 05 16 15 MR 1, FF3 Sthact (@-1106V					δ£/δt	(10 ⁻⁸ s ⁻¹)	8200	2.2	1.4	0.89	8200	2.1	1.5	1.1	8300	3000	2.4	1.5	0.7												
IRA JOD NOL: TV1130001 Rod ii: TV-E027 Product Form: J.F. Broduct Form: J.S. Product Form: J.S. Broduct Form: Bardness Imax, Ph SKS Kmax, Misc. Dr Broduct Form: Bardness Imax, Ph Past, Ph SKS Kmax, Misc. Dr Get COD, J. FFS Air J.S. Bardness Bardnes B					Dab Harb	תאט, חארט	1.8	1.5	0.5	0.5	1.8	0.8	0.8	0.8	1.9	1.5	1.3	1.0	1.0												
IRA JOD NO:: TV113001 Rod i: TV-E027 Rod i: TV-E027 Product Form: 3.5' Product Form: 3.5' Rod ND: 3.5' Product Form: 3.5' Mark Product 3.5' Mark Product 98.1 98.1 90.1 100.0% 70.7 0.45 OD1, FFS Anic 3.5' Mack Product 3.5' 120 100 105 OD1, FFS Standice-1.106V 36.0 162 82.0 82.5 83.5' 72.7 0.45 OD3, EHE 3.5''NACICe-1.106V 31.0 101 100.0% 73.5' 0.24 MR1, FFS Anic 3.5''NACICE-1.106V 31.0 4.3 33.4'''''''''''''''''''''''''''''''''''					Gnet	(ksi)	295.0	247.1	82.5	88.5	269.8	119.3	122.8	118.0	258.8	247.3	218.9	158.8	166.5												
IRA JOD NOL: TV1130901 Rod i TV-E027 Product Form: JE027 Rod i TV-E027 Product Form: JE027 Rod i TV-E027 Rod i JE027 Product Form: JE027 Rod i Barlow Product i SFS Kmax, Misc. S/N Environment Hardnes VIS Paras, Ph SFS SFS OD1, FFS Air Paras, Pi Paras, Pi Paras, Pi SFS Rmax, Misc. OD1, FFS Air J.S. Barlow J.S. Barlow Pint SFS SFS SFS OD1, FFS J.S. Macl $(=1.106V) 36.0 162 83.1 83.1 Month MR1, FFS J.S. Marcl (=1.106V) 35.5 143 89.1 30.0% 25.1 MR1, FFS J.S. Marcl (=1.106V) 35.5 143 89.1 30.0% 25.1 MR1, FFS J.S. $					Ш	(vin)	0.54	0.45	0.15	0.16	0.54	0.24	0.24	0.24	0.57	0.62	0.54	0.40	0.42												
IRA JOD NOL: TV1130001 Rod i TV-E027 Rod i TV-E027 Rod i TV-E027 Rod i J.C. Rod i J.C. S/N Environment Hardness Imax, plu Kins Voluct Form: $3.5''$ Hardness Imax, plu Wark Max, plu S/N Environment Hardness Int Plane, plu Plane, plu Max OD 1, FFS Air J.C. J.G. J.S. J.G. J.G. J.G. J.G. OD 3, EHE 3.5% Nacl $(\oplus -1.106V) 36.0 162 3.0 J.G. J.G. J.G. J.G. J.G. OD 4, EHE 3.5% Nacl (\oplus -1.106V) 35.5 164 20.0 32.3 29.8 30.0% MR 1, FFS OD 4, EHE 3.5% Nacl (\oplus -1.106V) 32.5 147 40.0 27.6% 27.6% MR 5, EHE 3.5% Nacl (\oplus -1.106V) 32.5 147 40.0 20.0 27.6% $					Kmax, Klscc,	KIp-EHE (ksivin)	87.0	72.7	24.0	26.1	79.5	34.9	35.6	34.4	76.1	101.9	88.7	65.1	68.7												
Ita Job No.: TV113001 Rod $#$: TV-E027 Rod $#$: TV-E027 Rod $#$: TV-E027 Rod H : TV-E027 Broduct Form: a.s.' Broduct Form: a.s' Product Form: a.s' Broduct Form: a.s' S/N Environment Hardness UTS Praget Pmax, Pm OD1, FFS Air 35:0 162 98:1 98:1 98:1 OD1, FFS Air 36:0 162 63:0 83:2 81:5 93:1 OD1, FFS Air 35:0 164 20:0 34:0 25:0 OD3, EHE 3.5% Naci @-1.106V 36:5 164 20:0 32:3 29:8 MR1, FFS Air 32:5 147 40:0 48:0 37:9 MR1, FFS Air 35:5 164 20:0 35:0 33:1 33:2 MR1, FFS MR5, EHE 3.5% Naci @-1.106V 31:0					%FS	(Pth/Pmax)	100.0%	83.6%	27.6%	30.0%	100.0%	43.9%	44.8%	43.3%	100.0%	100.0%	87.0%	63.9%	67.4%												
Truiacoot Truiacoot Truiacoot Rod $#$: 7-v-E027 P Product Form: a.s. a.s. Rod DD : a.s. b.a.d. S/N Environment Hardness UTS Paraget OD 1, FFS Air 36.0 162 98.1 98.1 OD 1, FFS Air 36.0 162 98.1 98.1 OD 1, FFS Air 36.0 162 68.1 94.0 OD 3, EHE 3.5% Naci $@-1.106V$ 36.5 164 26.0 32.3 OD 4, EHE 3.5% Naci $@-1.106V$ 36.5 164 26.0 32.3 MR 1, FFS Air 32.5 147 40.0 48.0 MR 5, EHE 3.5% Naci $@-1.106V$ 31.0 141 30.0 45.9 MR 5, EHE 3.5% Naci $@-1.106V$ 31.0 141 30.0 45.9 MR 5, EHE 3.5% Naci $@-1.106V$ 31.0 141 30.0 45.9 MR 6, EHE <td< th=""><th></th><th></th><th></th><th></th><th>Pmax, Pth</th><th>(Ibs)</th><th>98.1</th><th>81.5</th><th>26.0</th><th>29.8</th><th>89.1</th><th>38.2</th><th>37.9</th><th>36.8</th><th>84.9</th><th>386.0</th><th>316.3</th><th>238.4</th><th>258.5</th></td<>					Pmax, Pth	(Ibs)	98.1	81.5	26.0	29.8	89.1	38.2	37.9	36.8	84.9	386.0	316.3	238.4	258.5												
Truitaceon Truitaceon Rod Jak $7v-E027$ Rod $\#$ $7v-E027$ Product form: $3.5'$ Rod $\%$ $3.5'$ S/N $3.5'$ Brod OD: $3.5'$ S/N 1.0 S/N Funitoment Hardness UTS S/N $8.0'$ OD1, FFS $3.5'$ NR1, FFS $3.5'$ S/N $3.5'$ OD5, EHE $3.5'$ $3.5'$ $1.06'$ MR1, FFS $3.5'$ MR1, FFS $3.5'$ MR1, FFS $3.5'$ MR2, EHE $3.5'$ $3.5'$ $1.06'$ MR3, EHE $3.5''$ $3.5''$ $1.06'$ MR3, EHE $3.5''$ $3.5''$ $1.06'$ MR3, EHE $3.5''$ $3.5''$ $1.06'$ MR5, EHE $3.5''$ $3.5''$ $1.0''$ MR5, EHE 3.5	Pmax (Ibs)				98.1	88.2	34.0	32.3	89.1	53.1	48.0	45.9	84.9	386.0	328.9	290.3	270.1														
Trutaceon Trutaceon Rod $\#$: T-V-E027 Product Form: a.s." Rod M : T-V-E027 Rod M : 3.s." S/N Environment GD1, FFS 3.s." OD1, FFS 3.5% Nacl $@-1.106V$ 0D3, EHE 3.5% Nacl $@-1.106V$ 36.0 0D3, EHE 3.5% Nacl $@-1.106V$ 36.5 164 0NR 1, FFS Air 3.5.5 147 MR 1, FFS Air 3.5.5 144 MR 1, FFS Air 3.5.5 147 MR 4, EHE 3.5% Nacl $@-1.106V$ 36.5 147 MR 4, EHE 3.5% Nacl $@-1.106V$ 36.5 147 MR 4, EHE 3.5% Nacl $@-1.106V$ 36.5 147 MR 5, EHE 3.5% Nacl $@-1.106V$ 31.0 141 MR 5, EHE 3.5% Nacl $@-1.106V$ 32.5 147 MR 5, EHE 3.5% Nacl $@-1.106V$ 36.5 147 MR 5, EHE 3.5% Nacl $@-1.106V$ 36.5 147	Ptarget (Ibs)				98.1	63.0	40.0	26.0	89.1	59.0	40.0	30.0	84.9	386.0	307.0	200.0	200.0														
LRA Job No.: TV13001 Rod $\#$: Tv-E027 Product Form: Je Rod AD: 3.5" Product Form: 3.5" Rod DD: 3.5" S/N Environment Hardness OD J, FFS Air 36.0 OD 3, EHE 3.5% Nacl $@-1.106V$ 36.5 OD 4, EHE 3.5% Nacl $@-1.106V$ 36.5 OD 5, EHE 3.5% Nacl $@-1.106V$ 36.5 MR 1, FFS Air 37.5 MR 1, FFS 3.5% Nacl $@-1.106V$ 36.5 MR 3, EHE 3.5% Nacl $@-1.106V$ 31.5 MR 3, EHE 3.5% Nacl $@-1.106V$ 31.5 MR 5, EHE 3.5% Nacl $@-1.106V$ 31.5 MR 5, EHE 3.5% Nacl $@-1.106V$ 31.5 MR 5, EHE 3.5% Nacl $@-1.106V$ 32.5 MR 5, EHE 3.5% Nacl $@-1.106V$ 36.0 Thd 1, FFS Air 36.5 MR 6, EHE 3.5% Nacl $@-1.106V$ 36.5 MR 6, EHE 3.5% Nacl $@-1.106V$ 36.5					UTS	(ksi)	162	162	164	164	147	143	147	141	134	164	164	164	162												
LRA Job No.: TYL130901 Rod #:: 7-V-E027 Product Form: 1e Rod A:: 3.5" S/N 3.5" S/N Environment OD 1, FFS Air OD 3, EHE 3.5% Nacl @ -1.106V OD 4, FHE 3.5% Nacl @ -1.106V OD 5, EHE 3.5% Nacl @ -1.106V MR 1, FFS Air MR 1, FFS Air MR 1, FFS Air MR 5, EHE 3.5% Nacl @ -1.106V MR 1, FFS Air MR 5, EHE 3.5% Nacl @ -1.106V MR 1, FFS Air MR 5, EHE 3.5% Nacl @ -1.106V MR 6, EHE 3.5% Nacl @ -1.106V MR 6, EHE 3.5% Nacl @ -1.106V MR 6, EHE 3.5% Nacl @ -1.106V					Hardness	(HRC)	36.0	36.0	36.5	36.5	32.5	31.5	32.5	31.0	29.0	36.5	36.5	36.5	36.0												
LRA Job No.: Rod #: Product Form: Rod OD: S/N S/N S/N S/N S/N S/N S/N S/N S/N S/N	TYL130901	7-V-E027	1e	3.5"	Taritan and	Environment	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V												
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	N 3	N/c	OD 1, FFS	OD 3, EHE	OD 4, EHE	OD 5, EHE	MR 1, FFS	MR 3, EHE	MR 5, EHE	MR 6, EHE	Center 1, FFS	Thd 1, FFS	Thd 3, EHE	Thd 6, EHE	Thd 7, EHE												

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 7-V-E027 RSL[™] (B) 4-pt Bend Test

O.5 Fatigue Pre-cracked Specimen Test Results

O.5.1 OD 1, FFS:

Figure O.5-1: Rod 7-V-E027 OD 1, Graphical FFS Results

Figure O.5-2: Fracture Face of Rod 7-V-E027 OD 1, FFS

O.5.2 OD 3, EHE:

Figure O.5-3: Rod 7-V-E027 OD 3, Graphical EHE Results

Figure O.5-4: Fracture Face of Rod 7-V-E027 OD 3, EHE

O.5.3 OD 4, EHE:

Figure O.5-5: Rod 7-V-E027 OD 4, Graphical EHE Results

Figure O.5-6: Fracture Face of Rod 7-V-E027 OD 4, EHE

O.5.4 OD 5, EHE:

Figure O.5-7: Rod 7-V-E027 OD 5, Graphical EHE Results

Figure O.5-8: Fracture Face of Rod 7-V-E027 OD 5, EHE

O.5.5 MR 1, FFS:

Figure O.5-9: Rod 7-V-E027 MR 1, Graphical FFS Results

Figure O.5-10: Fracture Face of Rod 7-V-E027 MR 1, FFS

O.5.6 MR 3, EHE:

Figure O.5-11: Rod 7-V-E027 MR 3, Graphical EHE Results

Figure O.5-12: Fracture Face of Rod 7-V-E027 MR 3, EHE

O.5.7 MR 5, EHE:

Figure O.5-13: Rod 7-V-E027 MR 5, Graphical EHE Results

Figure O.5-14: Fracture Face of Rod 7-V-E027 MR 5, EHE

O.5.8 MR 6, EHE:

Figure O.5-15: Rod 7-V-E027 MR 6, Graphical EHE Results

Figure O.5-16: Fracture Face of Rod 7-V-E027 MR 6, EHE

O.5.9 Center 1, FFS:

Figure O.5-17: Rod 7-V-E027 Center 1, Graphical FFS Results

Figure O.5-18: Fracture Face of Rod 7-V-E027 Center 1, FFS

O.6 Threaded Specimen Test Results

O.6.1 Thd 1, FFS:

Figure O.6-1: Rod 7-V-E027 Thd 1, Graphical FFS Results

Figure O.6-2: Rod 7-V-E027 Thd 1 a) Thread Root Post FFS Test V and Pre-Charpy Impact and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

O.6.2 Thd 3, EHE:

Figure O.6-3: Rod 7-V-E027 Thd 3, Graphical EHE Results

Figure O.6-4: Rod 7-V-E027 Thd 3 EHE Fracture Face

O.6.3 Thd 6, EHE:

Figure O.6-6: Rod 7-V-E027 Thd 6, Graphical EHE Results

Figure O.6-7: Rod 7-V-E027 Thd 6 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure O.6-8: SEM of Rod 7-V-E027 Thd 6, EHE

O.6.4 Thd 7, EHE:

Figure O.6-9: Rod 7-V-E027 Thd 7, Graphical EHE Results

Figure O.6-10: Rod 7-V-E027 Thd 7 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix P: Rod 7-V-E093

P.1 Description of Sample

Rod 7-V-E093 was a PWS Strand Anchor Rod located at the anchorage location above Pier E2 from the same heat as the rod in Test Rig #11 tested in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. The bolts are 3.5 inches in diameter with machined threads. The segment from one of the rod pieces provided to LRA is shown in **Figure P.1-1**.

Figure P.1-1: Pier E2 Anchorage PWS Strand Anchor, Rod 7-V-E093

P.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 7-V-E093 and can be seen versus time in **Figure P**.2-1. The final OCP recorded for Rod 7-V-E093 was Vsce=-1.071 V.

Figure P.2-1: Open Circuit Potential for Rod 7-V-E093

P.3 Hardness

The hardness data and profile for sample 7-V-E093 are shown in Table P.3-1 and Figure P.3-1.

S /N	Hardness	Average
3/11	(HRC)	(HRC)
Center 1, FFS	29.0	29.0
MR 1, FFS	34.0	
MR 3, EHE	32.5	33.0
MR 4, EHE	32.5	
OD 1, FFS	37.5	
OD 3, EHE	37.0	
OD 4, EHE	38.0	
OD 5, EHE	37.5	
Thd 1, FFS	38.0	37.6
Thd 3, EHE	37.5	
Thd 5, EHE	37.5	
Thd 6, EHE	38.0	
Thd 7, EHE	37.5	

Table P.3-1: Hardness Data of Rod 7-V-E093 Specimen

Figure P.3-1: Hardness Profile of Rod 7-V-E093
P.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

P.4.1 Fatigue Pre-crack Results:

	Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 7-V-E093											
LRA Job No.:	TYL130901											
Rod#:	7-V-E093	Stru	ictural Component	: PWS Strand A	Inchor Rods (N	lain Cable)						
Product Form:	1e	Comments: 2010 Machined Threads, Heat OOF										
Rod OD:	3.5"		Same Heat as Rod in Test Rig #11 in Test IV									
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE						
			K _{max}	88.6								
			DTI _{th}	0.52								
	OD 1, FFS	37.5	Fu	0.98								
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)	8200								
			K _{threshold}		27.0							
			DTI _{th}			0.16						
σ	OD 3, EHE	37.0	Fu			0.30						
icke			Strain Rate									
-cra			(x10 ⁻⁸ in/in/sec)			4.1						
Pre			K _{threshold}			Main Cable) OOF IV K-EHE 27.0 0.16 0.30 4.1 23.0 0.13 0.25 1.1 22.2 0.13 0.25 0.13 0.25 0.13 0.25 0.13 0.25 0.13 0.25 0.13 0.25 0.13 0.25 0.13 0.25 0.13 0.25 0.98						
gue			DTI _{th}			0.13						
Fati	OD 4, EHE	38.0	Fu			0.25						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.1						
			K _{threshold}			22.2						
			DTI _{+h}			0.13						
	OD 5. EHE	37.5	Fu			ain Cable) DF K-EHE 27.0 0.16 0.30 4.1 23.0 0.13 0.25 1.1 22.2 0.13 0.25 0.98						
	,		Strain Rate									
			(x10 ⁻⁸ in/in/sec)			0.98						

	Test V ASTM F1624 Bolt Specimen Results											
		Thre	aded Rod ID # 7-V-	·E093								
LRA Job No.:	TYL130901	Stru	ictural Component	:: PWS Strand A	nchor Rods (N	/ain Cable)						
Rod#:	7-V-E093											
Product Form:	1e		Comments: 20	10 Machined Th	hreads, Heat C	DOF						
Rod OD:	3.5"		Same Heat as Rod in Test Rig #11 in Test IV									
	Sample #/ID	HRC	HRC K-FFS K-IHE K-EHE									
			K _{max}	79.2								
			DTI _{th}	0.52								
	MR 1, FFS	34.0	Fu	0.88								
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)	8300								
			Kubarahalal			As (Main Cable) eat OOF est IV K-EHE 43.5 0.30 0.48 2 41.4 0.28 0.46 1.80						
					0.30							
σ		22 5	En En		0.30							
cke	WIN 3, LITE	52.5	Fu Strain Pata			0.40						
cra					2							
-e-			(x10° in/in/sec)									
е			K _{threshold}			41.4						
tigı			DTI _{th}		0.28							
Ea	MR 4, EHE	32.5	Fu			0.46						
			Strain Rate			1.00						
			(x10 ⁻⁸ in/in/sec)			1.80						
			K _{max}	75.9	- 							
			DTI _{+h}	0.57								
	Center 1, FFS	29.0	Fu	0.84								
			Strain Rate	0.04								
			$(v 10^{-8} in / in / cas)$	8500								
			(xiu m/m/sec)									

P.4.2 Threaded Results:

	Test V ASTM F1624 Bolt Specimen Results											
		Thre	aded Rod ID # 7-V-	E093								
LRA Job No.:	TYL130901	Stru	ctural Component	• DW/S Strand A	nchor Pods (N	Azin Cable)						
Rod#:	7-V-E093	500	ctural component	• F WS Stranu P		Main Cable)						
Product Form:	1e		Comments: 202	10 Machined Tl	hreads, Heat C	OOF						
Rod OD:	3.5"		Same Heat as Rod in Test Rig #11 in Test IV									
	Sample #/ID HRC P-FFS P-IHE											
			Pmax* (lbs)	365.9								
			Fu	1.18								
	Thd 1, FFS	38.0	Rsb	1.5								
			Strain Rate	2000								
			(x10 ⁻⁸ in/in/sec)	5900								
			P _{threshold} * (lbs)			211.6						
			Fu			0.68						
	Thd 3, EHE	37.5	Hsr			0.9						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			2.2						
			P _{threshold} * (lbs)			195.1						
pa	Thd 5, EHE		Fu	0.63								
ade		37.5	Hsr			0.8						
Thre	-		Strain Rate									
-			(x10 ⁻⁸ in/in/sec)			2.0						
			P * (lbs)			186.9						
			threshold (103)			0.60						
	Thd 6 FHF	38.0	Fu Her			0.00						
		30.0	Strain Rate			0.8						
			$(v_10^{-8} in / in / and)$			1.9						
						102.4						
			P _{threshold} [*] (Ibs)			192.4						
		a= -	Fu			0.62						
	Thd 7, EHE	37.5	Hsr			0.8						
			Strain Rate			1.6						
			(x10 ⁻⁸ in/in/sec)			1.0						

P.4.3 Summary Table:

				Comments		Cracked Before 4 Hour Steps								Did Not Crack In Holiday	Did Not Crack In Holiday	Cracked in Holiday	Cracked in Holiday
	Ę		0.98	0.30	0.25	0.25	0.88	0.48	0.46	0.84	1.18	0.68	0.63	0.60	0.62		
				P* (Ibs)									365.9	211.6	195.1	186.9	192.4
				Step Load Profile	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	50 lbs/min	0.4 in/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4
				Klctod (ksiVin)	139.0				143.7			149.7					
				a (in)	0.2147	0.2155	0.212	0.2127	0.2117	0.2133	0.2157	0.2127	N/A	N/A	N/A	N/A	N/A
				δ£/δt (10 ⁻⁸ s ⁻¹)	8200	4.1	1.1	0.98	8300	2.0	1.8	8500	3900	2.2	2.0	1.9	1.6
				Rsb, Hsrb	1.8	0.6	0.5	0.4	1.8	1.0	1.0	1.9	1.5	0.9	0.8	0.8	0.8
				G net (ksi)	300.3	91.7	77.5	74.9	268.7	148.6	141.7	259.6	263.7	151.4	141.0	136.8	138.4
				DTI (Vin)	0.52	0.16	0.13	0.13	0.52	0.30	0.28	0.57	0.62	0.37	0.34	0.32	0.33
				Kmax, Klscc, Klp-EHE (ksivin)	88.6	27.0	23.0	22.2	79.2	43.5	41.4	75.9	106.7	61.7	56.9	54.5	56.1
				%FS (Pth/Pmax)	100.0%	30.5%	26.0%	25.1%	100.0%	54.9%	52.3%	100.0%	100.0%	27.8%	53.3%	51.1%	52.6%
				Pmax, P _{th} (Ibs)	99.2	30.0	26.3	25.1	89.0	47.8	44.9	82.5	380.2	235.1	199.3	179.4	199.1
				Pmax (Ibs)	99.2	36.9	31.4	29.5	89.0	60.1	52.6	82.5	380.2	309.9	262.4	191.3	210.1
				Ptarget (Ibs)	99.2	67.0	33.0	28.0	89.0	60.0	50.0	82.5	380.2	295.0	250.0	225.0	200.0
				UTS (ksi)	169	167	172	169	153	147	147	134	172	169	169	172	169
				Hardness (HRC)	37.5	37.0	38.0	37.5	34.0	32.5	32.5	29.0	38.0	37.5	37.5	38.0	37.5
TYL130901	7-V-E093	1e	3.5"	Environment	Air	3.5% NaCl @ -1.106 V	3.5% NaCl @ -1.106 V	3.5% NaCl @ -1.106 V	Air	3.5% NaCl @ -1.106 V	3.5% NaCl @ -1.106 V	Air	Air	3.5% NaCl @ -1.106 V	3.5% NaCl @ -1.106 V	3.5% NaCl @ -1.106 V	3.5% NaCl @ -1.106 V
LRA Job No.:	Rod #:	Product Form:	Rod OD:	S/N	OD 1, FFS	OD 3, EHE	OD 4, EHE	OD 5, EHE	MR 1, FFS	MR 3, EHE	MR 4, EHE	Center 1, FFS	Thd 1, FFS	Thd 3, EHE	Thd 5, EHE	Thd 6, EHE	Thd 7, EHE
					1	рәуэ	era	-91G	l ən	Bite	51				рәреә	цΤћ	

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 7-V-E093 RSL[™] (B) 4-pt Bend Test

P.5 Fatigue Pre-cracked Specimen Test Results

P.5.1 OD 1, FFS:

Figure P.5-1: Rod 7-V-E093 OD 1, Graphical FFS Results

Figure P.5-2: Fracture Face of Rod 7-V-E093 OD 1, FFS

P.5.2 OD 3, EHE:

Figure P.5-3: Rod 7-V-E093 OD 3, Graphical EHE Results

Figure P.5-4: Fracture Face of Rod 7-V-E093 OD 3, EHE

P.5.3 OD 4, EHE:

Figure P.5-5: Rod 7-V-E093 OD 4, Graphical EHE Results

Figure P.5-6: Fracture Face of Rod 7-V-E093 OD 4, EHE

P.5.4 OD 5, EHE:

Figure P.5-7: Rod 7-V-E093 OD 5, Graphical EHE Results

Figure P.5-8: Fracture Face of Rod 7-V-E093 OD 5, EHE

P.5.5 MR 1, FFS:

Figure P.5-9: Rod 7-V-E093 MR 1, Graphical FFS Results

Figure P.5-10: Fracture Face of Rod 7-V-E093 MR 1, FFS

P.5.6 MR 3, EHE:

Figure P.5-11: Rod 7-V-E093 MR 3, Graphical EHE Results

Figure P.5-12: Fracture Face of Rod 7-V-E093 MR 3, EHE

P.5.7 MR 4, EHE:

Figure P.5-13: Rod 7-V-E093 MR 4, Graphical EHE Results

Figure P.5-14: Fracture Face of Rod 7-V-E093 MR 4, EHE

P.5.8 Center 1, FFS:

Figure P.5-15: Rod 7-V-E093 Center 1, Graphical FFS Results

Figure P.5-16: Fracture Face of Rod 7-V-E093 Center 1, FFS

P.6 Threaded Specimen Test Results

P.6.1 Thd 1, FFS:

Figure P.6-1: Rod 7-V-E093 Thd 1, Graphical FFS Results

Figure P.6-2: Rod 7-V-E093 Thd 1 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Figure P.6-3: Rod 7-V-E093 Thd 3, Graphical EHE Results

Figure P.6-4: Rod 7-V-E093 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Zinc Intergranular Mixed Zinc Intergranular 12 Mixed Thread Root 25X 1) Thread Root 250X 2) Mixed: Ductile Overload, 3) Mixed: Ductile Overload, Intergranular 500X Intergranular 500X

Figure P.6-5: SEM of Rod 7V-E093 Thd 3, EHE

P.6.3 Thd 5, EHE:

Figure P.6-6: Rod 7-V-E093 Thd 5, Graphical EHE Results

Figure P.6-7: Rod 7-V-E093 Thd 5 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

P.6.4 Thd 6, EHE:

Figure P.6-8: Rod 7-V-E093 Thd 6, Graphical EHE Results

Figure P.6-9: Rod 7-V-E093 Thd 6 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

P.6.5 Thd 7, EHE:

Figure P.6-10: Rod 7-V-E093 Thd 7, Graphical EHE Results

Figure P.6-11: Rod 7-V-E093 Thd 7 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix Q: Rod 7-V-E096

Q.1 Description of Sample

Rod 7-V-E096 was a PWS Strand Anchor Rod located at the anchorage location above Pier E2 from the same heat as the rod in Test Rig #8 tested in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. The bolts are 3.5 inches in diameter with rolled threads. The segment from one of the rod pieces provided to LRA is shown in **Figure Q.1-1**.

Figure Q.1-1: Pier E2 Anchorage PWS Strand Anchor, Rod 7-V-E096

Q.2 Open Circuit Potential

OCP Test 7-V-E096 -0.70 -0.80 Vsce= -0.966 V Voltage (Vsce) -0.90 -1.00 -1.10 -1.20 0 10 20 30 40 50 Time (Hours) Figure Q.2-1: Open Circuit Potential for Rod 7-V-E096

The Open Circuit Potential (OCP) was recorded for Rod 7-V-E096 and can be seen versus time in **Figure Q**.2-1. The final OCP recorded for Rod 7-V-E096 was Vsce=-0.966 V.

LRA@LouRaymond.com Phone: 949 474-0218

Q.3 Hardness

The hardness data and profile for sample 7-V-E096 are shown in **Table Q.3-1** and **Figure Q.3-1**.

S/N	Hardness (HRC)	Average (HRC)
Center 1, FFS	28.5	28.5
MR 1, FFS	30.0	
MR 3, EHE	33.5	27.2
MR 4, EHE	33.5	32.3
MR 5, EHE	32.0	
OD 1, FFS	35.5	
OD 4, EHE	35.5	
OD 5, EHE	34.5	
OD 6, EHE	35.0	35.2
Th 1, FFS	35.0	
Th 3, EHE	35.0	
Th 4, EHE	36.0	

Table Q.3-1: Hardness Data of Rod 7-V-E096 Specimen

Figure Q.3-1: Hardness Profile of Rod 7-V-E096

Q.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

Q.4.1 Fatigue Pre-crack Results:

	Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 7-V-E096											
	TV// 120001	Inre	aded Rod ID # 7-V-E	:096								
LKA JOD NO.:	7 1/ 5000	Str	uctural Component:	PWS Strand A	nchor Rods (M	ain Cable)						
Broduct Form:	7-V-E096		Commonte: 7	010 Pollod Thr	anda Hant OV	1						
Product Form:	7 E		Same Heat a	s Rod in Tost Pi	edus, nedi UY ia #8 in Tost IV							
KOU OD.	5.5 Sample #/ID	ЦРС	Same near a			K-EUE						
			ĸ	84 0	K-IIIL							
				0.52								
		2E E	DII _{th}	0.53								
	001, FF3	55.5	Fu Chusin Data	0.93								
			Strain Rate	7100								
			(x10° in/in/sec)			-1.0						
			K _{threshold}			51.8						
			DTI _{th}			0.32						
	OD 4, EHE	35.5	Fu			0.57						
			Strain Rate			1.1						
-			(x10 ^{-*} in/in/sec)									
cked			K _{threshold}			27.0						
cra	OD 5, EHE		DTI _{th}			0.17						
Pre-		34.5	Fu			0.30						
gue			Strain Pato			0.50						
atig			$(v_1 0^{-8} in (in (a a a)))$			0.8						
ш.			(XIU III/III/SEC)									
			K _{threshold}			20.5						
			DTI _{th}			0.17						
	OD 6, EHE	35.0	Fu			0.29						
			Strain Rate			0.77						
			(x10 ⁻ ° in/in/sec)									
			K _{max}	80.2								
			DTI _{th}	0.58								
	MR 1, FFS	30.0	Fu	0.89								
			Strain Rate	8600								
			(x10 ⁻⁸ in/in/sec)	2000								

Test V ASTM F1624 Bolt Specimen Results												
	T	Thre	aded Rod ID # 7-V-E	:096								
LRA Job No.:	L130901	Structural Component: PWS Strand Anchor Rods (Main Cable)										
Rod#:	V-E096											
Product Form:	1e		Comments: 2	010 Rolled Thr)10 Rolled Threads, Heat OYI							
Rod OD:	3.5"	Same Heat as Rod in Test Rig #8 in Test IV										
	nple #/ID H	RC		K-FFS	K-IHE	K-EHE						
			K _{threshold}			42.7						
			DTI _{th}			0.28						
	R 3, EHE 33	3.5	Fu			0.47						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.9						
Γ			K _{threshold}	K _{threshold}								
			DTI _{th}			0.21						
Ð	R 4, EHE 33	3.5	Fu			0.35						
acke			Strain Rate									
-cra			(x10 ⁻⁸ in/in/sec)			1.5						
e Pre			K _{threshold}	32.8								
igue			DTI _{th}			0.23						
Fati	R 5, EHE 32	2.0	Fu			0.36						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1						
Ē			K _{max}	73.5		OYI t IV K-EHE 42.7 0.28 0.47 1.9 31.5 0.21 0.35 1.5 1.5 32.8 0.23 0.36 1 1						
			DTI _{th}	0.55								
	ter 1, FFS 28	8.5	Fu	0.81								
	,	-	Strain Rate	0.01								
			$(x10^{-8} in/in/sec)$	5800								
Fatigue Pre-cracked	R 3, EHE 33 R 4, EHE 33 R 5, EHE 32 ter 1, FFS 28	3.5 3.5 2.0	$K_{threshold}$ DTI_{th} Fu Strain Rate $(x10^{-8} in/in/sec)$ $K_{threshold}$ DTI_{th} Fu Strain Rate $(x10^{-8} in/in/sec)$ $K_{threshold}$ DTI_{th} Fu Strain Rate $(x10^{-8} in/in/sec)$ K_{max} DTI_{th} Fu Strain Rate $(x10^{-8} in/in/sec)$	73.5 0.55 0.81 5800		42. 0.2 0.4 1. 31. 0.2 0.3 1. 32 0.2 0.3 1						

Q.4.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results											
		Thre	aded Rod ID # 7-V-	-E096							
LRA Job No.:	TYL130901	Str	uctural Componen	+ DN/S Strand Ar	chor Rods (M	ain Cable)					
Rod#:	Rod#: 7-V-E096										
Product Form:	Product Form: 1e Comments: 2010 Rolled Threads, Heat OYI										
Rod OD:	3.5"	3.5" Same Heat as Rod in Test Rig #8 in Test IV									
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE					
			Pmax* (lbs)	326.8							
			Fu	1.06							
	Thd 1, FFS	35.0	Rsb	1.5							
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)	2300							
			P _{threshold} * (lbs)		300.1						
ed			Fu		0.97						
ead	Thd 3, EHE	35.0	Hsr			1.4					
Thr			Strain Rate								
-			(x10 ⁻⁸ in/in/sec)			2.1					
			P _{threshold} * (lbs)			305.6					
			Fu			0.99					
	Thd 4, EHE	36.0	Hsr			1.4					
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)			1.9					

Q.4.3 Summary Table:

						f								'n.	c.	
				Comments		Potential Drit Early in Test			Data lag.					Ran out of Motor Extensic	Did not crack i holiday.	Cracked in holiday.
			ľ	P	0.93	0.57	0.30	0.29	0.89	0.47	0.35	0.36	0.81	1.06	0.97	0.99
			P* (Ibs)											326.8	300.1	305.6
			Step Load	Profile	0.2 in/min	10/5/2,4	10/5/2,4	10/5/2,4	50 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	0.2 in/min	0.4 in/min	10/5/2,4	10/5/2,4
			Klctod	(ksi Vin)	144.2				137.6				143.9			
			а	(in)	0.2101	0.217	0.2167	0.2129	0.2152	0.2149	0.2067	0.2124	0.2145	N/A	N/A	N/A
			δ£/δt	(10 ⁻⁸ s ⁻¹)	7100	1.1	0.8	0.77	8600	1.9	1.5	1	5800	2300	2.1	1.9
				KSD, HSrD	1.8	1.1	0.6	0.6	2.0	1.0	0.7	0.8	1.9	1.5	1.4	1.4
			σnet	(ksi)	285.0	178.8	93.0	90.8	274.5	146.0	105.8	111.9	250.8	232.8	213.9	221.3
			ΠQ	(Vin)	0.53	0.32	0.17	0.17	0.58	0.28	0.21	0.23	0.55	0.61	0.56	0.55
			Kmax, Klscc,	Klp-eнe (ksivin)	84.0	51.8	27.0	26.5	80.2	42.7	31.5	32.8	73.5	95.3	87.5	89.1
			%FS	(Pth/Pmax)	100.0%	61.7%	32.1%	31.5%	100.0%	53.2%	39.3%	40.9%	100.0%	100.0%	91.8%	93.5%
			Pmax, Pth	(Ibs)	94.6	54.0	28.6	27.9	87.1	46.7	35.9	36.2	80.6	349.6	318.6	308.2
			Ртах	(Ibs)	94.6	60.0	33.0	30.0	87.1	54.6	42.8	45.0	80.6	349.6	333.1	323.7
			Ptarget	(Ibs)	94.6	30.0	22.0	20.0	87.1	52.0	45.0	29.0	80.6	349.6	283.0	240.0
			UTS	(ksi)	159	159	155	157	138	151	151	145	133	157	157	162
			Hardness	(HRC)	35.5	35.5	34.5	35.0	30.0	33.5	33.5	32.0	28.5	35.0	35.0	36.0
7-V-E096	1e	3.5"	L	Environment	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
Rod #:	Product Form:	Rod OD:		N/S	OD 1, FFS	OD 4, EHE	OD 5, EHE	OD 6, EHE	MR 1, FFS	MR 3, EHE	MR 4, EHE	MR 5, EHE	Center 1, FFS	Thd 1, FFS	Thd 3, EHE	Thd 4, EHE
						pə	yck	io-9	r9 e	n8	te 1			p	apear	ш

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 7-V-E096 RSL[™] (B) 4-pt Bend Test

TYL130901

LRA Job No.:

Q.5 Fatigue Pre-cracked Specimen Test Results

Q.5.1 OD 1, FFS:

Figure Q.5-1: Rod 7-V-E096 OD 1, Graphical FFS Results

Figure Q.5-2: Fracture Face of Rod 7-V-E096 OD 1, FFS

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Q.5.2 OD 4, EHE:

Figure Q.5-3: Rod 7-V-E096 OD 4, Graphical EHE Results

Figure Q.5-4: Fracture Face of Rod 7-V-E096 OD 4, EHE

Q.5.3 OD 5, EHE:

Figure Q.5-5: Rod 7-V-E096 OD 5, Graphical EHE Results

Figure Q.5-6: Fracture Face of Rod 7-V-E096 OD 5, EHE

Q.5.4 OD 6, EHE:

Figure Q.5-7: Rod 7-V-E096 OD 6, Graphical EHE Results

Figure Q.5-8: Fracture Face of Rod 7-V-E096 OD 6, EHE

Q.5.5 MR 1, FFS:

Figure Q.5-9: Rod 7-V-E096 MR 1, Graphical FFS Results

Figure Q.5-10: Fracture Face of Rod 7-V-E096 MR 1, FFS

Q.5.6 MR 3, EHE:

Figure Q.5-11: Rod 7-V-E096 MR 3, Graphical EHE Results

Figure Q.5-12: Fracture Face of Rod 7-V-E096 MR 3, EHE

Q.5.7 MR 4, EHE:

Figure Q.5-13: Rod 7-V-E096 MR 4, Graphical EHE Results

Figure Q.5-14: Fracture Face of Rod 7-V-E096 MR 4, EHE

Q.5.8 MR 5, EHE:

Figure Q.5-15: Rod 7-V-E096 MR 5, Graphical EHE Results

Figure Q.5-16: Fracture Face of Rod 7-V-E096 MR 5, EHE

Q.5.9 Center 1, FFS:

Figure Q.5-17: Rod 7-V-E096 Center 1, Graphical FFS Results

Figure Q.5-18: Fracture Face of Rod 7-V-E096 Center 1, FFS

Q.6 Threaded Specimen Test Results

Q.6.1 Thd 1, FFS:

Figure Q.6-1: Rod 7-V-E096 Thd 1, Graphical FFS Results

Figure Q.6-2: Rod 7-V-E096 Thd 1 Thread Root Post FFS Test V and Pre-Charpy Impact

Q.6.2 Thd 3, EHE:

Figure Q.6-3: Rod 7-V-E096 Thd 3, Graphical EHE Results

Figure Q.6-4: Rod 7-V-E096 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Figure Q.6-5: SEM of Rod 7-V-E096 Thd 3, EHE

Thread Root 25X

2) Mixed: Ductile Overload, Intergranular 500X

1) Ductile Overload 500X

3) Ductile Overload 500X
Q.6.3 Thd 4, EHE:

Figure Q.6-6: Rod 7-V-E096 Thd 4, Graphical EHE Results

Figure Q.6-7: Rod 7-V-E096 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix R: Rod 8-V-1

R.1 Description of Sample

Rod 8-V-1 was a Tower Saddle Tie Rod located at the top of the main tower on the SAS span from the same group of material Test Rig #7 tested in Test IV. It was made from 4140 steel to ASTM A354 Grade BD. The bolts are 4 inches in diameter with rolled threads. The segment from one of the spares from this rod provided to LRA is shown in **Figure R.1-1**.

Figure R.1-1: Tower Anchorage Anchor Bolt (Bottom), Rod 8-V-1

R.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 8-V-1 and can be seen versus time in **Figure R**.2-1. The final OCP recorded for Rod 8-V-1 was Vsce = -0.896V.

Figure R.2-1: Open Circuit Potential for Rod 8-V-1

R.3 Hardness

The hardness data and profile for sample 8-V-1 are shown in **Table R.3-1** and **Figure R.3-1**.

S/N	Hardness (HRC)	Average (HRC)
Center, FFS	31.5	31.5
MR 1, FFS	34.5	
MR 5, EHE	33.5	34.0
MR 6,EHE	34.0	
OD 1, FFS	32.5	
OD 3, EHE	32.5	
OD 5, EHE	32.0	2 2 E
Th 1, FFS	31.0	52.5
Th 3, EHE	34.0	
Th 4, EHE	33.0	

Table R.3-1: Hardness Data of Rod 8-V-1 Specimen

R.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

R.4.1 Fatigue Pre-cracked Results:

		Test	V ASTM F1624 Bolt Sp Threaded Rod ID	ecimen Results # 8-V-1									
LRA Job No.:	TYL130901		Structural C	amaaaati Towar									
Rod#:	8-V-1		Structural C	omponent: Tower	Saudie He Rous								
Product Form:	1e	Com	Comments: Rolled Threads; Same Group of Material as Test Ri										
Rod OD:	4"	com	inents. Noneu mieda	, sume Group of N									
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE							
			K _{max}	86.8									
			DTI _{th}	0.59									
	OD 1, FFS	32.5	Fu	0.95									
			Strain Rate	8500									
			(x10 ⁻⁸ in/in/sec)	8500									
			K _{threshold}			33.9							
			DTI _{th}			0.23							
	OD 3, EHE	32.5	Fu			0.37							
			Strain Rate			2							
			(x10 ⁻⁸ in/in/sec)			2							
			K _{threshold}			36.3							
		32.0	DTI _{th}			0.25							
	OD 5, EHE		Fu			0.40							
			Strain Rate										
7			(x10 ⁻⁸ in/in/sec)			1.6							
cke			K _{max}	81.5									
-cra			DTI _{th}	0.53									
Pre	MR 1, FFS	34.5	Fu	0.89									
gue			Strain Rate										
Fati			(x10 ⁻⁸ in/in/sec)	8200									
—			K _{threshold}			30.7							
			DTI _{th}			0.20							
	MR 5, EHE	33.5	Fu			0.33							
			Strain Rate			2.2							
			(x10 ⁻⁸ in/in/sec)			2.2							
			K _{threshold}			33.4							
			DTI _{th}			0.22							
	MR 6,EHE	34.0	Fu			0.36							
			Strain Rate			1 2							
			(x10 ⁻⁸ in/in/sec)			1.2							
			K _{max}	77.1									
			DTI _{th}	0.54									
	Center 1, FFS	31.5	Fu	0.84									
			Strain Rate	8100									
			(x10 ⁻⁸ in/in/sec)	0100									

R.4.2 Threaded Results:

	Test V ASTM F1624 Bolt Specimen Results													
			Threaded Ro	od ID # 8-V-1										
LRA Job No.:	TYL130901		Structu	ral Component: To	war Saddla Tia Roda									
Rod#:	8-V-1		Structural component. Tower Saddre He hous											
Product Form:	1e	6	memory and a Thu); a #7 ; b To at 1)/										
Rod OD:	4"	CO	Comments : Rolled Threads; Same Group of Material as Test Rig #7 in Test IV											
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE								
			Pmax* (lbs)	304.2										
			Fu	0.97										
	Thd 1, FFS	31.0	Rsb	1.6										
	-		Strain Rate	5000										
			(x10 ⁻⁸ in/in/sec)	5000										
			P _{threshold} * (lbs)			267.5								
ed			Fu			0.85								
ead	Thd 3, EHE	34.0	Hsr			1.3								
Ę			Strain Rate											
			(x10 ⁻⁸ in/in/sec)			1.9								
			P _{threshold} * (lbs)			270.3								
			Fu			0.86								
	Thd 4, EHE	33.0	Hsr			1.3								
			Strain Rate											
			(x10 ⁻⁸ in/in/sec)			1.6								

R.4.3 Summary Table

				omments									Cracked in Holiday	Cracked in Holiday
				Fu 0	0.95	0.37	0.40	0.89	0.33	0.36	0.84	0.97	0.85	0.86
				P* (Ibs)								304.2	267.5	270.3
				Step Load Profile	50 lbs/min	10/5/2,4	10/5/2,4	501bs/min	10/5/2,4	10/5/2,4	501bs/min	0.4 in/min	10/5/2,4	10/5/2,4
				Klctod (ksiVin)	154.9			145.1			128.9	N/A		
				a (in)	0.2131	0.2145	0.2139	0.2113	0.2149	0.2129	0.2105	N/A	N/A	N/A
				δ£/δt (10 ⁻⁸ s ⁻¹)	8500	2	1.6	8200	2.2	1.2	8100	5000	1.9	1.6
				Rsb, Hsrb	2.0	0.8	0.9	1.8	0.7	0.7	1.8	1.6	1.3	1.3
				σ net (ksi)	296.9	116.3	123.6	276.4	105.3	113.1	261.0	225.4	197.7	197.7
				DTI (vîn)	0.59	0.23	0.25	0.53	0.20	0.22	0.54	0.63	0.51	0.53
				Kmax, Klscc, Klp-ene (ksivin)	86.8	33.9	36.3	81.5	30.7	33.4	77.1	88.7	78.0	78.8
				%FS (Pth/Pmax)	100.0%	39.1%	41.8%	100.0%	37.7%	41.0%	100.0%	100.0%	87.9%	88.8%
				Pmax, Pth (Ibs)	94.9	36.9	40.4	92.0	33.5	37.7	87.2	287.2	255.5	261.9
				Pmax (lbs)	94.9	48.4	54.0	92.0	45.8	45.0	87.2	287.2	271.3	275.5
				Ptarget (Ibs)	94.9	56.9	45.0	92.0	61.0	36.0	87.2	287.2	216.8	190.0
				UTS (ksi)	147	147	145	155	151	153	143	141	153	149
				Hardness (HRC)	32.5	32.5	32.0	34.5	33.5	34.0	31.5	31.0	34.0	33.0
TYL130901	8-V-1	1e	4"	Environment	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
LRA Job No.:	Rod #:	Product Form:	Rod OD:	S/N	OD 1, FFS	OD 3, EHE	OD 5, EHE	MR 1, FFS	MR 5, EHE	MR 6, EHE	Center 1, FFS	Thd 1, FFS	Thd 3, EHE	Thd 4, EHE
-		-			p	ске	ero-	Pre	ən	Bite	Э		pəpeə	лүт

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod 1D # 8-V-1 RSL[™] (B) 4-pt Bend Test

R.5 Fatigue Pre-cracked Specimen Test Results

R.5.1 OD 1, FFS:

Figure R.5-1: Rod 8-V-1 OD 1, Graphical FFS Results

Figure R.5-2: Fracture Face of Rod 8-V-1 OD 1, FFS

R.5.2 OD 3, EHE:

Figure R.5-3: Rod 8-V-1 OD 3, Graphical EHE Results

Figure R.5-4: Fracture Face of Rod 8-V-1 OD 3, EHE

R.5.3 OD 5, EHE:

Figure R.5-5: Rod 8-V-1 OD 5, Graphical EHE Results

Figure R.5-6: Fracture Face of Rod 8-V-1 OD 5, EHE

R.5.4 MR 1, FFS:

Figure R.5-7: Rod 8-V-1 MR 1, Graphical FFS Results

Figure R.5-8: Fracture Face of Rod 8-V-1 MR 1, FFS

R.5.5 MR 5, EHE:

Figure R.5-9: Rod 8-V-1 MR 5, Graphical EHE Results

Figure R.5-10: Fracture Face of Rod 8-V-1 MR 5, EHE

R.5.6 MR 6, EHE:

Figure R.5-11: Rod 8-V-1 MR 6, Graphical EHE Results

Figure R.5-12: Fracture Face of Rod 8-V-1 MR 6, EHE

R.5.7 Center 1, FFS:

Figure R.5-13: Rod 8-V-1 Center 1, Graphical FFS Results

Figure R.5-14: Fracture Face of Rod 8-V-1 Center 1, FFS

R.6 Threaded Specimen Test Results

R.6.1 Thd 1, FFS:

Figure R.6-1: Rod 8-V-1 Thd 1, Graphical FFS Results

Figure R.6-2: Rod 8-V-1 Thd 1 a) Thread Root Post FFS Test V and Pre-Charpy Impact and b) FFS Fracture Face

Page 404

R.6.2 Thd 3, EHE:

Figure R.6-3: Rod 8-V-1 Thd 3 Graphical EHE Results

Figure R.6-4: Rod 8-V-1 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

3) Ductile Overload 1000X

R.6.3 Thd 4, EHE:

Figure R.6-6: Rod 8-V-1 Thd 4 Graphical EHE Results

Figure R.6-7: Rod 8-V-1 Thd 4 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

3) Ductile Overload 1000X

Appendix S: Rod 13-V-CW-4

S.1 Description of Sample

Rod 13-V-CW-4 was a Tower Anchorage Anchor Bolt. No material from the same or similar heat as Rod 13-V-CW-4 was tested in Test IV. The rod was made from 4140 steel to ASTM A354 Grade BD. The bolts are 4 inches in diameter with machined threads. The segment from this rod provided to LRA is shown in **Figure S.1-1**.

Figure S.1-1: Tower Anchorage Anchor Bolt, Rod 13-V-CW-4

S.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod 13-V-CW-4 and can be seen versus time in **Figure S**.2-1. The final OCP recorded for Rod 13-V-CW-4 was Vsce=-0.893 V.

Figure S.2-1: Open Circuit Potential for Rod 13-V-CW-4

S.3 Hardness

The hardness data and profile for sample 13-V-CW-4 are shown in Table S.3-1 and Figure S.3-1.

C /N	Hardness	Average
5/11	(HRC)	(HRC)
Center 1, FFS	30.5	30.5
MR 1, FFS	35.0	
MR 3, EHE	35.5	
MR 5, EHE	36.5	36.1
MR 6, EHE	36.5	
MR 7, EHE	37.0	
OD 2, FFS	37.0	
OD 4, EHE	36.0	
OD 5, EHE	36.5	26.6
Th 1, FFS	35.5	30.0
Th 3, EHE	37.0	
Th 4, EHE	37.5	

Table S.3-1: Hardness Data of Rod 13-V-CW-4 Specimen

Figure S.3-1: Hardness Profile of Rod 13-V-CW-4

S.4 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables.

S.4.1 Fatigue Pre-crack Results:

Test V ASTM F1624 Bolt Specimen Results													
		Th	readed Rod ID # 1	.3-V-cW-4		- I:							
LRA Job No.:	KA JOD NO.: IYLI30901 Structural Component: Tower Anchor Bolts												
Rod#:	13-V-cW-4			(100 Dia. Anchor	Bolts)								
Product Form:	1e		Comments: Cut Threads										
Rod OD:	4"												
	Sample #/ID	HRC		K-FFS	K-IHE	K-EHE							
			K _{max}	92.8									
			DTI _{th}	0.56									
	OD 2, FFS	37.0	Fu	1.01									
			Strain Rate										
			(x10 ⁻⁸ in/in/sec)	8400									
			K _{threshold}			25.8							
	OD 4, EHE		DTI _{th}			0.16							
ed		36.0	Fu			0.28							
ack			Strain Rate										
e-cr			(x10 ⁻⁸ in/in/sec)			4.5							
e Pr			K _{threshold}			21.4							
igue			DTI _{th}			0.13							
Fat	OD 5, EHE	36.5	Fu			0.23							
	-		Strain Rate										
			(x10 ⁻⁸ in/in/sec)			1.2							
			K _{max}	79.8									
			DTI _{th}	0.51									
	MR 1, FFS	35.0	Fu	0.87									
	-		Strain Rate										
			(x10 ⁻⁸ in/in/sec)	8100									

	Т	est V A	STM F1624 Bolt Sp	ecimen Results								
Threaded Rod ID # 13-V-cW-4												
LRA Job No.:	TYL130901		Structural Comp	onent: Tower A	nchorage Ancł	nor Bolts						
Rod#:	13-V-cW-4			(100 Dia. Anchor	Bolts)							
Product Form:	1e	Commonte: Cut Throads										
Rod OD:	4"		comments: Cut Inreads									
	Sample #/ID	HRC		K-EHE								
			K _{threshold}			40.6						
			DTI _{th}			0.25						
	MR 3, EHE	35.5	Fu			0.44						
			Strain Rate			• •						
			(x10 ⁻⁸ in/in/sec)			2.3						
			K _{threshold}			24.1						
			DTI _{th}			0.15						
	MR 5, EHE	36.5	Fu			0.26						
			Strain Rate			0.20						
			$(x10^{-8} in/in/sec)$			1.4						
ked			K.,			32.1						
crac	MR 6, EHE					0.20						
re-o		36 5	Dir _{th}			0.20						
еР		50.5	FU Strain Pate			0.55						
tigu			$(v_10^{-8} in/in/coc)$			1.2						
Fa						25.1						
			K _{threshold}			25.1						
		27.0	DTI _{th}			0.15						
	MIR 7, EHE	37.0	Fu			0.27						
			Strain Rate			0.9						
			(x10 ^{-°} in/in/sec)									
			K _{max}	76.3								
			DTI _{th}	0.55								
	Center 1, FFS	30.5	Fu	0.83								
			Strain Rate	8100								
			(x10 ⁻⁸ in/in/sec)	0100								

S.4.2 Threaded Results:

Test V ASTM F1624 Bolt Specimen Results												
		Thre	aded Rod ID # 13-V-	-cW-4								
LRA Job No.:	TYL130901		Structural Compor	nent: Tower And	horage Anchor	Bolts						
Rod#:	13-V-cW-4		(1	00 Dia. Anchor B	olts)							
Product Form:	1e											
Rod OD:	4"		CO	innents. cut mi	eaus							
	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE						
			Pmax* (lbs)	331.3								
			Fu	1.05								
	Thd 1, FFS	35.5	Rsb	1.6								
			Strain Rate	2750								
			(x10 ⁻⁸ in/in/sec)	2750								
			P _{threshold} * (lbs)			198.9						
led			Fu			0.63						
ead	Thd 3, EHE	37.0	Hsr			0.9						
Thr			Strain Rate			2.2						
			(x10 ⁻⁸ in/in/sec)			2.2						
			P _{threshold} * (lbs)			221.9						
			Fu			0.71						
	Thd 4, EHE	37.5	Hsr			1.0						
			Strain Rate			4.0						
			(x10 ⁻⁸ in/in/sec)			1.9						

S.4.3 Summary Table:

TYL130901	#: 13-V-cW-4	n: 1e): 4"	Environment Hardness UTS Prarget Pmax I (HRC) (ksi) (lbs) (lbs)	Air 37.0 167 103.4 103.4	3.5% NaCl @ -1.106V 36.0 162 65.5 36.0	3.5% NaCl @ -1.106V 36.5 164 33.0 28.1	Air 35.0 157 91.5 91.5	3.5% NaCl @ -1.106V 35.5 159 64.1 51.3	3.5% NaCl @ -1.106V 36.5 164 50.0 35.0	3.5% NaCl @ -1.106V 36.5 164 35.0 43.8	3.5% NaCl @ -1.106V 37.0 167 25.0 31.3	Air 30.5 139 86.6 86.6	Air 35.5 159 302.0 302.0	3.5% NaCl @ -1.106V 37.0 167 232.7 244.6	3 5% NaCl @ -1 106V 37 5 169 200 0 240 0
				nax, Pth (lbs) %FS (Pth/Pmax)	103.4 100.0%	29.4 27.8%	23.1 23.1%	91.5 100.0%	44.7 50.9%	27.5 30.2%	34.9 40.2%	28.7 31.5%	86.6 100.0%	302.0 100.0%	173.7 60.0%	199.5 67.0%
				Kmax, Klscc, D Klp-EHE (ksivin) (V	92.8 0.	25.8 0.	21.4 0.	79.8 0.	40.6 0.	24.1 0.	32.1 0.	25.1 0.	76.3 0.	96.6	58.0 0.	64.7 0.
				(h) (hs	56 316	16 87	13 73	51 269	25 138	15 81	20 110	15 84	55 258	61 247	35 149	38 166
				et Rsb, Hsrk	.4 1.9	.0 0.5	.6 0.4	1.7	3.5 0.9	.3 0.5	0.7 0.7	.7 0.5	3.3 1.9	.7 1.6	0.9	1.0
				δ£/δt (10 ⁻⁸ s ⁻¹)	8400	4.5	1.2	8100	2.3	1.4	1.2	0.9	8100	2750	2.2	1.9
				a (in) (0.2022	0.2091	0.2168	0.2114	0.215	0.2097	0.2166	0.2099	0.2114	N/A	N/A	N/A
				Klctod (ksiVin)	132.5 5		-	129.5 5		-			146.3 5			
				itep Load Profile (0 lbs/min	10/5/2,4	10/5/2,4	0 lbs/min	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	0 lbs/min	.4 in/min 3	10/5/2,4	10/5/2.4 2
				P* F lbs) F	÷.	0	0	0.	ö	0	0.	0.	0.	31.3 1.0	98.9	0 6 1 6
				u Comments	11	28 Threshold in Two Hour Steps	23	37	14	26	35	27	33	35	53 Did not crack in Holiday.	71 Cracked in Holiday.

Summary Table of Test V ASTM F1624 Bolt Specimen Results Threaded Rod ID # 13-V-cW-4 RSL[™] (B) 4-pt Bend Test

S.5 Fatigue Pre-cracked Specimen Test Results

S.5.1 OD 2, FFS:

Figure S.5-1: Rod 13-V-CW-4 OD 2, Graphical FFS Results

Figure S.5-2: Fracture Face of Rod 13-V-CW-4 OD 2, FFS

Figure S.5-3: SEM of Rod 13-V-CW-4 OD 2, FFS

Macro 20X

Overload 1000X

S.5.2 OD 4, EHE:

Figure S.5-4: Rod 13-V-CW-4 OD 4, Graphical EHE Results

Figure S.5-5: Fracture Face of Rod 13-V-CW-4 OD 4, EHE

S.5.3 OD 5, EHE:

Figure S.5-6: Rod 13-V-CW-4 OD 5, Graphical EHE Results

Figure S.5-7: Fracture Face of Rod 13-V-CW-4 OD 5, EHE

S.5.4 MR 1, FFS:

Figure S.5-8: Rod 13-V-CW-4 MR 1, Graphical FFS Results

Figure S.5-9: Fracture Face of Rod 13-V-CW-4 MR 1, FFS

S.5.5 MR 3, EHE:

Figure S.5-10: Rod 13-V-CW-4 MR 3, Graphical EHE Results

Figure S.5-11: Fracture Face of Rod 13-V-CW-4 MR 3, EHE

S.5.6 MR 5, EHE:

Figure S.5-12: Rod 13-V-CW-4 MR 5, Graphical EHE Results

Figure S.5-13: Fracture Face of Rod 13-V-CW-4 MR 5, EHE

S.5.7 MR 6, EHE:

Figure S.5-14: Rod 13-V-CW-4 MR 6, Graphical EHE Results

Figure S.5-15: Fracture Face of Rod 13-V-CW-4 MR 6, EHE

S.5.8 MR 7, EHE:

Figure S.5-16: Rod 13-V-CW-4 MR 7, Graphical EHE Results

Figure S.5-17: Fracture Face of Rod 13-V-CW-4 MR 7, EHE

S.5.9 Center 1, FFS:

Figure S.5-18: Rod 13-V-CW-4 Center 1, Graphical FFS Results

Figure S.5-19: Fracture Face of Rod 13-V-CW-4 Center 1, FFS

S.6 Threaded Specimen Test Results

S.6.1 Thd 1, FFS:

Figure S.6-1: Rod 13-V-CW-4 Thd 1, Graphical FFS Results

Figure S.6-2: Rod 13-V-CW-4 Thd 1 a) Thread Root Post FFS Test V and Pre-Charpy Impact and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658
S.6.2 Thd 3, EHE:

Figure S.6-3: Rod 13-V-CW-4 Thd 3, Graphical EHE Results

Figure S.6-4: Rod 13-V-CW-4 Thd 3 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

S.6.3 Thd 4, EHE:

Figure S.6-5: Rod 13-V-CW-4 Thd 4, Graphical EHE Results

Figure S.6-6: Rod 13-V-CW-4 Thd 4 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Appendix T: Rod Remnant B1-F4

T.1 Description of Sample

The Remnant B1-F4 test specimens were taken from the unstressed portion above the nut of the rod tested in Test Rig 1 in Test IV. The specimens were used to specify a design limit at the zinc potential and verify the results of Test IV.

T.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod Remnant B1-F4 and can be seen versus time in **Figure T.2-1**. The final OCP recorded for Rod Remnant B1-F4 was Vsce=-0.902 V.

Figure T.2-1: Open Circuit Potential for Rod Remnant B1-F4

T.3 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" table.

T.3.1 Threaded Results:

	Test V A	STM F1	624 Bolt Specimer	Results							
		Rem	nnant ID # B1-F4								
LRA Job No.:	TYL130901	Stru	ictural Component	c. Dior E2 Boaring	a Bolts (Spare)						
Rod#:	B1-F4	500	Structural components: Pier E2 Bearing Boits (Spare)								
Product Form:	1e		Comments	: Machined Threa	ads						
Rod OD:	3"		Dead End of Rod from Test Rig #1 in Test IV								
	Sample #/ID	HRC	HRC P-FFS P-EHE								
			Pmax* (lbs)	341.2							
			Fu	1.12							
	Thd 1, FFS	36	Rsb	1.5							
σ			2000								
ade			(x10 ⁻⁸ in/in/sec)	3000							
hrea			P _{threshold} * (lbs)		210.9						
F			Fu		0.69						
	Thd 5, EHE	36.5	Hsr		0.9						
			Strain Rate		1.2						
			(x10 ⁻⁸ in/in/sec)		1.2						

T.3.2 Summary Table:

			_			nang	auu
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	s/N	Thd 1, FFS	Thd 5, EHE
	TYL130901	B1-F4	1e	3"	Environment	Air	3.5% NaCl @ -1.106V
					Hardness (HRC)	36	36.5
					UTS (ksi)	162	164
					Ptarget (Ibs)	413.0	300.0
					Pmax (Ibs)	413.0	285.5
RS					Pmax, Pth (Ibs)	413.0	209.0
L TM (B) 4-pt Bend Te	"(B) 4 pt Bend Test				%FS (Pth/Pmax)	100.0%	61.8%
est					Kmax, KIp-EHE (ksivin)	99.5	61.5
					DTI (niv)	0.62	0.37
					O net (ksi)	236.9	153.8
					Rsb, Hsrb	1.5	0.9
					δ£/δt (10 ⁻⁸ s ⁻¹)	3000	1.2
					Step Load Profile	0.4 in/min	10/5/1,8
					P* (Ibs)	341.2	210.9
					Fu	1.12	0.69
					Comments		Did Not Crack In Holiday
							×

Summary Table of Test V ASTM F1624 Bolt Specimen Results Remnant ID # B1-F4

T.4 Threaded Specimen Test Results

T.4.1 Thd 1, FFS:

Figure T.4-1: Rod Remnant B1-F4 Thd 1, Graphical FFS Results

Figure T.4-2: Rod Remnant B1-F4 Thd 1 FFS Fracture Face

T.4.2 Thd 5, EHE:

Figure T.4-3: Rod Remnant B1-F4 Thd 5, Graphical EHE Results

Figure T.4-4: Rod Remnant B1-F4 Thd 5 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Appendix U: Rod Remnant B2-F5

U.1 Description of Sample

The Remnant B2-F5 test specimens were taken from the unstressed portion above the nut of the rod tested in Test Rig 2 in Test IV. The specimens were used to specify a design limit at the zinc potential and verify the results of Test IV.

U.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod Remnant B2-F5 and can be seen versus time in **Figure U.2-1**. The final OCP recorded for Rod Remnant B2-F5 was Vsce=-0.886 V.

Figure U.2-1: Open Circuit Potential for Rod Remnant B2-F5

U.3 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" table.

U.3.1 Threaded Results:

	Test V	ASTM	F1624 Bolt Specime	en Results							
		Re	emnant ID # B2-F5								
LRA Job No.:	TYL130901	C+r1	ictural Component	c. Dior E2 Popring	Rolts (Spara)						
Rod #:	B2-F5	301	ictural component	S. FIEI LZ DEdIIIIg	s Boits (Spare)						
Product Form:	1e		Comments: Machined Threads								
Rod OD:	3"		Dead End of Rod from Test Rig #2 in Test IV								
	Sample #/ID	HRC	HRC P-FFS P-EHE								
			Pmax* (lbs)	335.4							
			Fu	1.10							
т	Thd 1, FFS	36.0	Rsb	1.5							
			Strain Rate	2500							
			(x10 ⁻⁸ in/in/sec)	3500							
			P _{threshold} * (lbs)		217.8						
led			Fu		0.72						
ead	Thd 3, EHE	35.5	Hsr		0.9						
Thr			Strain Rate		1.0						
			(x10 ⁻⁸ in/in/sec)		1.8						
			P _{threshold} * (lbs)		253.1						
			Fu		0.83						
	Thd 5, EHE	36.0	Hsr		1.1						
			Strain Rate								
			(x10 ⁻⁸ in/in/sec)		1.1						

U.3.2 Summary Table:

				P*	(Ibs) ru	ו 335.4 1.10	217.8 0.72 D	253.1 0.83 Did C
				Step Load	Profile	0.4 in/mir	10/5/2,4	10/5/1,8
				δ£/δt (10 ⁻⁸ s ⁻¹)		3500	1.8	1.1
				Deb Uerb	טוצח ,טצח	1.5	0.9	1.1
				σnet	(ksi)	240.1	148.6	183.1
				Ш	(Vin)	0.60	0.40	0.46
				Kmax, Klp-EHE	(ksivin)	8.79	63.5	73.8
				% EC (D+P (D)		100.0%	64.9%	75.5%
				Pmax, Pth	(Ibs)	375.0	285.6	254.9
				Pmax	(sql)	375.0	317.1	270.4
				Ptarget	(Ibs)	375.0	302.0	270.0
				UTS	(ksi)	162	159	162
				Hardness	(HRC)	36.0	35.5	36.0
TYL130901	17L130901 B2-F5 1e 3"		3"			Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
LRA Job No.:	Rod #:	Product Form:	Rod OD:	N/ 3	NI/C	Thd 1, FFS	Thd 3, EHE	Thd 5, EHE
							элдт	

Summary Table of Test V ASTM F 1624 Bolt Specimen Results Remnant ID # 82-F5 RSL¹⁴⁴ (B) 4-pt Bend Test

U.4 Threaded Specimen Test Results

U.4.1 Thd 1, FFS:

Figure U.4-1: Rod Remnant B2-F5 Thd 1, Graphical FFS Results

Figure U.4-2: Rod Remnant B2-F5 Thd 1 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

U.4.2 Thd 3, EHE:

Figure U.4-3: Rod Remnant B2-F5 Thd 3, Graphical EHE Results

Figure U.4-4: Rod Remnant B2-F5 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

U.4.3 Thd 5, EHE:

Figure U.4-5: Rod Remnant B2-F5 Thd 5, Graphical EHE Results

Figure U.4-6: Rod Remnant B2-F5 Thd 5 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix V: Rod Remnant S3-D2

V.1 Description of Sample

The Remnant S3-D2 test specimens were taken from the unstressed portion above the nut of the rod tested in Test Rig 3 in Test IV. The specimens were used to specify a design limit at the zinc potential and verify the results of Test IV.

V.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod Remnant S3-D2 and can be seen versus time in **Figure V.2-1**. The final OCP recorded for Rod Remnant S3-D2 was Vsce=-0.817 V.

Figure V.2-1: Open Circuit Potential for Rod Remnant S3-D2

V.3 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" table.

V.3.1 Threaded Results:

	Test V A	STM F1	624 Bolt Specimen	Results						
LRA Job No.:	TYL130523	C+mu		Dior 52 Shoor Ka	Ny Dolta (Sporo)					
Rod#:	S3-D2	Struc	ctural Components	: Pier EZ Shear Ke	ey Boits (Spare)					
Product Form:	1e		Comments: Machined Threads							
Rod OD:	3"		Dead End of Rod	from Test Rig #3 i	n Test IV					
	Sample #/ID	HRC	HRC P-FFS P-EHE							
			Pmax* (lbs)	338.5						
			Fu	1.12						
	Thd 1, FFS	35.5	Rsb	1.5						
			Strain Rate	2200						
			(x10 ⁻⁸ in/in/sec)	3200						
			P _{threshold} * (lbs)		222.9					
led			Fu		0.73					
'eac	Thd 3, EHE	36	Hsr		1.0					
Thi			Strain Rate		25					
			(x10 ⁻⁸ in/in/sec)		2.5					
			P _{threshold} * (lbs)		224.3					
			Fu		0.74					
	Thd 4, EHE	36	Hsr		1.0					
			Strain Rate		2.0					
			(x10 ⁻⁸ in/in/sec)		2.0					

V.3.3 Summary Table:

								pəp	eə.	лЧТ	
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	C /N	N/c	Thd 1, FFS	тьд 2 ЕНЕ	1111 J, L11L	тьа л сыс	111U 4, ENE
	TYL130523	S3-D2	1e	3"	Emironmont		Air	3 5% Narti @ -1 106V		2 EW NaCI @ 1 106V	VUULT- 2 1001 0/C.C
					Hardness	(HRC)	35.5	36.0	0.00	0 96	0.00
					UTS	(ksi)	159	167	707	167	ZOT
Sur					Ptarget	(sdl)	369.9		0.067	750.0	0.002
nmary T					Pmax	(Ibs)	369.9	775 G	0.017		TINNE
able of Test Re RSL"					Pmax, Pth	(sdl)	369.9	316 E	C'017	0 1/1	224.0
: V ASTM F162 mnant ID # S5 " (B) 4-pt Ben					%FS	(Pth/Pmax)	100.0%	76C 767	0/6.00	70C JJ	%C.00
24 Bolt Specimen F 3-D2 d Test					Ктах, КІр-єне	(ksivin)	98.7	65 U	0.00	CE A	4.00
Results					DTI	(vin)	0.62	070	01.0		0.40
					Gnet	(ksi)	242.3	16A 6	0.401	1611	T.+0T
					Dch Uch	עוכדו עוכא	1.5	1 0	7.1	0	л.т
					δ£/δt	(10 ⁻⁸ s ⁻¹)	3200	с С	C-7	ç	7
					Step Load	Profile	0.4 in/min	10/5/2 /	+'7 /c /ot	10/5/7	+'7 /c /nt
					*d	(Ibs)	338.5		C-777	C V C C	C.44.2
						2	1.12	CL 0	c/.n	20	0.74
					Jummon			Did Crack	In Holiday	Did Not Crack	in Holiday
				· .							-

V.4 Threaded Specimen Test Results

V.4.1 Thd 1, FFS:

Figure V.4-1: Rod Remnant S3-D2 Thd 1, Graphical FFS Results

Figure V.4-2: Rod Remnant S3-D2 Thd 1 a) Thread Root from Side and Normal Views Post EHE Test and b) FFS Fracture Face

LRA@LouRaymond.com Phone: 949 474-0218

V.4.2 Thd 3, EHE:

Figure V.4-3: Rod Remnant S3-D2 Thd 3, Graphical EHE Results

Figure V.4-4: Rod Remnant S3-D2 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

V.4.3 Thd 4, EHE:

Figure V.4-5: Rod Remnant S3-D2 Thd 4, Graphical EHE Results

Figure V.4-6: Rod Remnant S3-D2 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

Appendix W: Rod Remnant S4-E2

W.1 Description of Remnants

The Remnant S4-E2 test specimens were taken from the unstressed portion above the nut of the rod tested in Test Rig 4 in Test IV. The specimens were used to specify a design limit at the zinc potential and verify the results of Test IV.

W.2 Open Circuit Potential

The Open Circuit Potential (OCP) was recorded for Rod Remnant S4-E2 and can be seen versus time in **Figure W.2-1**. The final OCP recorded for Rod Remnant S4-E2 was Vsce=-1.009 V.

Figure W.2-1: Open Circuit Potential for Rod Remnant S4-E2

W.3 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" table.

W.3.1 Threaded Results:

	Test V A	STM F1	624 Bolt Specimer	Results							
LRA Job No.:	TYL130901	nen									
Rod#:	S4-E2	Struc	tural Components	: Pier E2 Shear Ke	ey Bolts (Spare)						
Product Form:	1e		Comments: Machined Threads								
Rod OD:	3"		Dead End of Rod from Test Rig #4 in Test IV								
	Sample #/ID	HRC	HRC P-FFS P-EHE								
			Pmax* (lbs)	314.1							
			Fu	1.03							
	Thd 1, FFS	35	Rsb	1.4							
			Strain Rate	2500							
			(x10 ⁻⁸ in/in/sec)	2500							
			Pthreshold* (lbs)		211.9						
			Fu		0.70						
	Thd 3, EHE	35.5	Hsr		1.0						
σ			Strain Rate		2.2						
ade			(x10 ⁻⁸ in/in/sec)		2.2						
hre			Pthreshold* (lbs)		218.1						
F			Fu		0.72						
	Thd 4, EHE	34.5	Hsr		1.0						
			Strain Rate		1.0						
			(x10 ⁻⁸ in/in/sec)		1.9						
			Pthreshold* (lbs)		214.0						
			Fu		0.70						
	Thd 5, EHE	36	Hsr		1.0						
			Strain Rate		1.0						
			(x10 ⁻⁸ in/in/sec)		1.0						

W.3.2 Summary Table:

				Č	3		ວັ	-	ů	-	ວັ	-
				ā	-	1.03	02.0	2.2	C	0.72	02.0	00
				*d	(Ibs)	314.1	0110	6.112	1 010	710.1	0 1 1 0	0.412
				Step Load	Profile	0.4 in/min	10/E/J 1	+'7 /c /nT	V C/3/01	10/ 2/ 4,4	10/E/1 0	
				δ£/δt	(10 ⁻⁸ s ⁻¹)	2500	ιι	7.7	1 0	т.Э	1 0	т. О
				већ неић		1.4	0 1) i	6	О.Т	0 1	D.1
				Gnet	(ksi)	227.2	152 /	1.001	1 5 7 0	۲./CL	156.2	C.UC.1
				DП	(Vin)	0.58	02.0	CC.D	11 0	U.41	02.0	CC.D
			Ктах, КІр-ене	(ksivin)	91.6	61 Q	0.10	536	0.00	67 /	1.70	
				%FS	(Pth/Pmax)	100.0%	701 LY	8/0.10	/8/ 02	09.4%	60 10 <u>7</u>	00.170
				Pmax, Pth	(sdl)	331.3	317 E	0.112	0 716	720.0	71E 1	1.012
				Ртах	(Ibs)	331.3	ι ειε	2.020	1000	C.002	1010	240.4
				Ptarget	(Ibs)	331.3	0 626	0.017	0.010	24U.U	0.076	240.0
				UTS	(ksi)	157	150	CCT	166	CCT	167	TUZ
				Hardness	(HRC)	35.0	3E E	r.rr	3 7 6	C. P C	0 9C	20.00
17L130901	S4-E2	1e	3"	Environment		Air	2 E0/ NaCl @ 11061		2 EV Nort @ 1 1067	2.2% INACI @ - 1.100V	2 E0/ NaCl @ 11061	
LKA JOD NO.:	Rod #:	Product Form:	Rod OD:	C/N		Thd 1, FFS	тьд 2 быб		тьа и сне	111U 4, ENE	тьа с сыс	
					Threaded							

Summary Table of Test V ASTM F1624 Bolt Specimen Results Remnant ID# S4-E2 RSL[™] (B) 4-pt Bend Test

W.4 Threaded Specimen Test Results

W.4.1 Thd 1, FFS:

Figure W.4-1: Rod Remnant S4-E2 Thd 1, Graphical FFS Results

Figure W.4-2: Rod Remnant S4-E2 Thd 1 a) Thread Root from Side and Normal Views Post FFS Test and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

LRA@LouRaymond.com Phone: 949 474-0218

W.4.2 Thd 3, EHE:

Figure W.4-3: Rod Remnant S4-E2 Thd 3, Graphical EHE Results

Figure W.4-4: Rod Remnant S4-E2 Thd 3 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

W.4.3 Thd 4, EHE:

Figure W.4-5: Rod Remnant S4-E2 Thd 4, Graphical EHE Results

Figure W.4-6: Rod Remnant S4-E2 Thd 4 a) Thread Root from Side and Normal Views Post EHE Test and b) EHE Fracture Face

W.4.4 Thd 5, EHE:

Figure W.4-7: Rod Remnant S4-E2 Thd 5, Graphical EHE Results

Figure W.4-8: Rod Remnant S4-E2 Thd 5 EHE Fracture Face

Appendix X: Rod Remnant 7-V-TR-9-E

X.1 Description of Remnants

The Remnant 7-V-TR-9-E test specimens were taken from the unstressed portion above the nut of the rod tested in Test Rig 9 in Test IV. The specimens were used to specify a design limit at the zinc potential and verify the results of Test IV.

X.2 Summary

The results from this table are summarized in the following "checker board" table. Detailed data are listed in the following summary table.

X.2.1 Threaded Results:

	Test V ASTM F1624 Bolt Specimen Results											
		Thi	readed Rod ID # 7-V	-TR-9-E								
LRA Job No.:	TYL130901	Str	ructural Component	• DWS Strand An	chor Rods (Ma	in Cable)						
Rod#:	7-V-TR-9-E	50	uccura component			in cable)						
Product Form:	1e		Comme	ents: 2010 Rolled	Threads							
Rod OD:	3.5"		Dead End of Rod from Test Rig #9 in Test IV									
	Sample #/ID	HRC	RC P-FFS P-IHE P-I									
			Pmax* (lbs)	349.5								
			Fu	1.13								
Thd	Thd 1, FFS	37.0	Rsb	1.5								
			Strain Rate	train Rate								
			(x10 ⁻⁸ in/in/sec)	4400								
			P _{threshold} * (lbs)			234.2						
ed			Fu			0.76						
ead	Thd 2, EHE	36.5	Hsr			1.0						
Thr			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			1.1						
			P _{threshold} * (lbs)			233.2						
			Fu			0.75						
	Thd 3, EHE	37.5	Hsr			1.0						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			0.6						

X.2.2 Summary Table:

						omments		d Crack In	Holiday	d Not Crack	n Holiday
							13	Di Di	2	Dic	
					*	lso (sc	9.5 1.3	. 0 C V	4.6	. 0 C C	0.2.0
					<u>ч</u>		34	сс С	5	с с	ς
					,	этер гоад игот	0.4 in/min	10/2/01	O'T IC INT	96 6/3/06	ατ'τ /ς /ητ
					\$£/\$t	(10 ⁻⁸ s ⁻¹)	4400		T.T	0 66	cc.0
						KSD, HSFD	1.5	0	л.т	10	T.U
s					σnet	(ksi)	254.8	160 6	0.501	167.0	T0/.4
Result					DTI	(vin)	0.61	<i>CV</i> U	0.44	07.0	0.40
524 Bolt Specimen 7-V-TR-9-E nd Test					Kmax, KIp-EHE	(ksivin)	101.9	6 0 2	C.00	000	0.00
st V ASTM F16 ded Rod ID # 7 L ^m (B) 4- pt Be					%FS	(Pth/Pmax)	100.0%	20 10/	0.0.0	/0L JJ	00.7%
/ Table of Te Threa RS					Pmax, Pth	(Ibs)	342.0	C 0CL	C.7C2	3000	C.YC2
umman					Ртах	(Ibs)	342.0	7EA 0	0.402	764.0	2.4C2
S					Ptarget	(sql)	342.0	769.0	200.0	0 0 2 0	Z00.U
					UTS	(ksi)	167	161	101 1	160	тол
	_				Hardness	(HRC)	37.0	36 5	C.UC	375	C./C
	TYL130901	7-V-TR-9-E	1e	3.5"		Environment	Air	2 E0/ NPCI @ 1 1061	2.2% NACI @ -T.100V	2 EV NoCI @ 1 106V	2.070 NdCI @ -1.100V
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	14/ 5	N/c	Thd 1, FFS	тьдо сыс	1110 Z, ETTE	тьдо сыс	111U 3, ENE
								pəp	eə.	чц	

X.3 Threaded Specimen Test Results

X.3.1 Thd 1, FFS:

Figure X.3-1: Rod Remnant 7-V-TR-9-E Thd 1, Graphical FFS Results

Figure X.3-2: Rod Remnant 7-V-TR-9-E Thd 1 a) Thread Root Post FFS Test V and Pre-Charpy Impact and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

LRA@LouRaymond.com Phone: 949 474-0218

X.3.2 Thd 2, EHE:

Figure X.3-3: Rod Remnant 7-V-TR-9-E Thd 2, Graphical EHE Results

Figure X.3-4: Rod Remnant 7-V-TR-9-E Thd 2 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

X.3.3 Thd 3, EHE:

Figure X.3-5: Rod Remnant 7-V-TR-9-E Thd 3, Graphical EHE Results

Figure X.3-6: Rod Remnant 7-V-TR-9-E Thd 3 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Appendix Y: Rod Remnant 7-V-TR-10-G

Y.1 Description of Remnants

The Remnant 7-V-TR-10-G test specimens were taken from the unstressed portion above the nut of the rod tested in Test Rig 10 in Test IV. The specimens were used to specify a design limit at the zinc potential and verify the results of Test IV.

Y.2 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" table.

Y.2.1 Threaded Results:

	Те	st V AS	TM F1624 Bolt Speci	imen Results								
		Thre	eaded Rod ID # 7-V-	TR-10-G								
LRA Job No.:	TYL130901	S++	ructural Component	• DWS Strand An	chor Pode (Ma	in Cable)						
Rod#:	7-V-TR-10-G	50										
Product Form:	1e		Commen	its: 2010 Machine	ed Threads							
Rod OD:	3.5"		Dead End of Rod from Test Rig #10 in Test IV									
	Sample #/ID	HRC	IRC P-FFS P-IHE P-EHE									
			Pmax* (lbs)	343.0								
			Fu	1.11								
ا ب	Thd 1, FFS	35.5	Rsb	1.6								
			Strain Rate	44.00								
			(x10 ⁻⁸ in/in/sec)	4100								
			P _{threshold} * (lbs)			208.5						
ed			Fu		0.67							
ead	Thd 2, EHE	36.0	Hsr			0.9						
Thr			Strain Rate									
•			(x10 ⁻⁸ in/in/sec)			1.1						
			P _{threshold} * (lbs)			195.5						
			Fu			0.63						
	Thd 3, EHE	36.0	Hsr			0.9						
			Strain Rate									
			(x10 ⁻⁸ in/in/sec)			0.5						

Y.2.2 Summary Table:

								pəp	eə.	ιц	
	LRA Job No.:	Rod #:	Product Form:	Rod OD:	N/ 3	N/c	Thd 1, FFS	тьд с це	1110 Z, LITL	тьар сне	
	TYL130901	7-V-TR-10-G	1e	3.5"	Tarri tarra ant	Environment	Air	2 E% NPCI @ 1106/			VOULL - سا ושאו 2.0%
					Hardness	(HRC)	35.5	36.0	0.00	0.50	0.00
					UTS	(ksi)	159	167	707	167	707
Sun					Ptarget	(Ibs)	343.9	0 196	70+07	0 190	204.0
l ynann					Pmax	(Ibs)	343.9	750.0	0.002	1000	C.UE2
able of Test Threade RSL ^{**}					Pmax, Pth	(Ibs)	343.9	0.010	0.012	C 201	7.161
t V ASTM F162 ed Rod ID # 7-V * (B) 4-pt Benc					%FS	(Pth/Pmax)	100.0%	700 09	8/0.00		%0.7C
4 Bolt Specimen F /-TR-10-G d Test					Ктах, КІр-ене	(ksivin)	100.0	en e	0.00	0	0.70
Results					E	(vin)	0.63	000	00.0	10.0	cc.0
					Gnet	(ksi)	249.5	151 0	0.101	C C / F	142.2
					Dob Houk	130, 1310	1.6	00	0.0	00	0.7
					δ£/δt	(10 ⁻⁸ s ⁻¹)	4100		T .T	0 53	cc.0
					Step Load	Profile	0.4 in/min	10/E/1 0	10/5/1,8		ατ'τ /ς /ητ
						(Ibs)	343.0	3 000	C.002	105	C.CEL
						2	1.11	0.67		0.63	
					Commonte.	COMMENTS		Did Not Crack	In Holiday	Did Not Crack	In Holiday

Y.3 Threaded Specimen Test Results

Y.3.1 Thd 1, FFS:

Figure Y.3-1: Rod Remnant 7-V-TR-10-G Thd 1, Graphical FFS Results

Figure Y.3-2: Rod Remnant 7-V-TR-10-G Thd 1 a) Thread Root Post FFS Test V and Pre-Charpy Impact and b) FFS Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658 LRA@LouRaymond.com Phone: 949 474-0218

Y.3.2 Thd 2, EHE:

Figure Y.3-3: Rod Remnant 7-V-TR-10-G Thd 2, Graphical EHE Results

Figure Y.3-4: Rod Remnant 7-V-TR-10-G Thd 2 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Y.3.3 Thd 3, EHE:

Figure Y.3-5: Rod Remnant 7-V-TR-10-G Thd 3, Graphical EHE Results

Figure Y.3-6: Rod Remnant 7-V-TR-10-G Thd 3 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face
Appendix Z: Zinc Cracking

Z.1 Description of Sample

Rod samples were received at LRA and visually examined for general condition and major defects. Samples varied in length from 6 inches to 24 inches.

Specimens from Rod 7-V-E012 were selected to machine 0.4B threaded specimens to determine when cracking initiated under acoustic emission. Determining crack initiation on specimens with and without galvanizing allowed LRA to distinguish if the galvanizing on the specimens acted as a stress riser at the root of the thread. Short dwell time tests, one minute or less between loading increments, were performed on galvanized and non-galvanized threaded specimens to determine the magnitude of the stress intensity factor at crack initiation.

Additionally, Rod 3-V-10 Threaded SN6 was used to verify that the environmental threshold was equivalent with and without the galvanizing on the specimen.

This specimen had the zinc removed in dilute HCl, was baked at $375^{\circ}F$ for 24 hours, visually examined thread root area to verify absence of galvanizing, and RSL tested at parameters identical to Rod 3-V-10 Threaded SN3 (10/5/2,4 with strain rate = 2E-10).

The results determined that the stress intensity factor at crack initiation was similar for both the galvanized and non-galvanized specimens. Hence, the galvanizing on the rod does not act as a stress riser.

Further information on the rods selected for these tests can be found in the previous corresponding rod Appendix G Rod 3-V-10 and Appendix N Rod 7-V-E012.

Z.1.1 Rod 7-V-E012 Thd 5 (Without Galvanizing), Rapid RSL:

Specimens from Rod 7-V-E012 are shown at the end of this appendix but explained in special projects, Section 4.5.4.

Figure Z.1-1: Rod 7-V-E012 Thd 5 (Without Galvanizing), Graphical Rapid RSL Results

Figure Z.1-2: Rod 7-V-E012 Thd 5 (Without Galvanizing) Thread Root During Test

Z.1.2 Rod 7-V-E012 Thd 6 (With Galvanizing), Rapid RSL:

Figure Z.1-3: Rod 7-V-E012 Thd 6 (With Galvanizing), Graphical Rapid RSL Results

Figure Z.1-4: Rod 7-V-E012 Thd 6 (With Galvanizing) Thread Root During Test

Z.2 Summary

The results for the threaded galvanized and bare EHE specimens from Rod 3-V-10 are summarized in the following "checker board" table and summary table. Detailed data and photos for the threaded galvanized specimens from Rod 3-V-10 are in Appendix G Rod 3-V-10.

Z.2.1 Threaded Results for Rod 3-V-10:

	Test	t V AST	M F1624 Bolt	Specimen Results		
		Spe	cial Project: Z	Zinc Cracking		
LRA Job No.:	TYL130901					
Special Project:	Zinc Cracking					
Rod OD:	3"					
	Sample #/ID	HRC	Galvanized	Environment		P-EHE
					$P_{threshold}$ * (Ibs)	227.4
					Fu	0.75
	3-V-10 Thd 3, EHE	35.0	Yes	3.5% NaCl @ -1.106V	Hsr	1.0
					Strain Rate	2
					(x10 ⁻⁸ in/in/sec)	
_			Yes		P _{threshold} * (Ibs)	235.3
ded					Fu	0.78
rea	3-V-10 Thd 4, EHE	36.0		3.5% NaCl @ -1.106V	Hsr	1.0
Ę					Strain Rate	1 /
					(x10 ⁻⁸ in/in/sec)	1.4
					P _{threshold} * (Ibs)	231.8
					Fu	0.76
	3-V-10 Thd 6, EHE	35.5	No	3.5% NaCl @ -1.106V	Hsr	1.0
					Strain Rate	2
					(x10 ⁻⁸ in/in/sec)	Z

Z.2.2 Summary Table:

RSL ^{IIII} (B) 4-pt Bend Test				Pmax, Pth %FS Kmax, Kl	(Ibs) (Pth/Pmax) (ksivin	242.7 67.0% 66.3	241.8 69.4% 68.6	242.5 68.4% 67.6
				S Ptarget Prmax	i) (Ibs) (Ibs)	7 256.6 335.2	2 180.0 324.1	9 256.6 343.8
				Hardness UTS	(HRC) (ksi)	35.0 157	36.0 162	35.5 159
	TYL130901	Zinc Cracking	3"		Environment	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V
	LRA JOD NO.:	Special Project:	Rod OD:	14, 5	N/C	3-V-10 Thd 3, EHE	3-V-10 Thd 4, EHE	3-V-10 Thd 6, EHE
				<u>.</u>			pəpeə	JYL

Summary Table of Test V ASTM F1624 Bolt Specimen Results Special Project: Zinc Cracking

Z.3 Threaded Specimen Test Results

Z.3.1 Rod 3-V-10 Thd 6, EHE:

Figure Z.3-1: Rod 3-V-10 Thd 6, Graphical EHE Results

Figure Z.3-2: Rod 3-V-10 Thd 6 EHE Fracture Face

Appendix AA: Plane Strain and Hardened Specimens

AA.1 Description of Sample

Rod samples were received at LRA and visually examined for general condition and major defects. Samples varied in length from 6 to 24 inches. Rod 3-V-12 was selected to machine 1.0B plane strain threaded specimens. The Exemplar Rod from Group ID #16, was selected to machine 0.4B threaded specimens and heat treat said specimens to hardnesses close to 40, 45 and 50 HRC.

AA.2 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" table. Heat treated specimens are seen by HT, and AR for as received.

AA.2.1 Threaded Results:

	Test V AST	M F1624	Bolt Specimen Resul	ts						
	Special Project: Pl	ane Stra	in and Hardened Spe	ecimens						
LRA Job No.:	TYL130901									
Special Project:	Plane Strain and									
Rod OD:	Hardened Specimens									
Nou OD.	Sample #/ID	HRC		P-FFS	P-IHE	P-EHE				
			Pmax* (lbs)	326.5						
			Fu	1.08						
	Rod 3-V-12, 1.0B Thd 1, FFS	35.5	Rsb	1.5						
			Strain Rate							
			(x10 ⁻⁸ in/in/sec)	3900						
		12, 1.0B Thd 2, IHE Perform (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								
_			Fu	P-FFS P-IHE P-EHE 5) 326.5 1.08 1.5 1.08 1.5 1.6 1.6 sec) 3900 311.1 1.02 1.4 1.5 2.1 1.0 1.0 1.0 1.0 sec) 2.1 216.4 0.71 1.0 <td< td=""></td<>						
تو المحمود المحم	Rod 3-V-12, 1.0B Thd 2, IHE	36.5	Hsr		1.4					
			Strain Rate		2.1					
, T		$\begin{array}{ c c c c c c } & Strain Rate & 2.1 \\ \hline & (x10^{\$} in/in/sec) & 2.1 \\ \hline \\ P_{threshold}^{*} (lbs) & 216.4 \\ Fu & 0.71 \\ Strain Rate & 1.0 \\ Strain Rate & 2.2 \\ \hline & (x10^{\$} in/in/sec) & 213.0 \\ \hline \end{array}$								
trai	Rod 3-V-12, 1.0B Thd 3, EHE 35.5 Hsr Strain Rate (x10 ⁻⁸ in/in/sec) Image: Constraint of the second se	216.4								
ne S			Fu			0.71				
Pla	Rod 3-V-12, 1.0B Thd 3, EHE	35.5	Hsr			1.02 1.4 2.1 2.1 216.4 0.71 1.0 2.2 213.0 0.70 1.0 1.9 263.4 0.87				
			Strain Rate							
		ļ	(x10 ⁻⁸ in/in/sec)							
			P _{threshold} * (lbs)			213.0				
			Fu			0.70				
	Rod 3-V-12, 1.0B Thd 4, EHE	35.5	Hsr			216.4 0.71 1.0 2.2 213.0 0.70 1.0 1.9 263.4 0.87 1.1 1.8				
			Strain Rate			1.9				
		s Prive P-IHE P-EHE FFS 35.5 Rsb 1.08 326.5 P-IHE P-EHE FFS 35.5 Rsb 1.5 3300 311.1 P-EHE IHE 36.5 Hsr 3900 311.1 P-EHE 1.02 IHE 36.5 Hsr 1.4 Strain Rate 2.1 0.71 IHE 35.5 Hsr 1.0 216.4 0.71 1.0 EHE 35.5 Hsr 1.0 0.71 1.0 0.71 EHE 35.5 Hsr 1.0 0.71 1.0 0.70 EHE 35.5 Hsr 1.0 0.70 1.0 1.0 EHE 35.5 Hsr 1.0 1.0 1.0 1.0 EHE 35.5 Hsr 1.0 1.0 1.0 1.0 EHE 35.5 Hsr 1.0 1.0 1.0 1.0 1.0 1.0 1.0								
			P _{threshold} * (Ibs)			263.4				
		20.0	Fu			0.87				
	R0a 16, H1 1000 Ind 1, EHE	39.0	HST Strain Pate			1.1				
			Jul 10 ⁻⁸ in (in (a ca)			216.4 0.71 1.0 2.2 213.0 0.70 1.0 1.9 263.4 0.87 1.1 1.8 220.2 0.73 0.7 2.1				
led		1				220.2				
read			Pthreshold (IDS)			0.72				
Ę	Rod 16 HT 800 Tbd 1 FHF	45 5	Fu Hsr			0.73				
ned			Strain Rate			0.7				
arde			(x10 ⁻⁸ in/in/sec)			2.1				
Ϋ́			P _{threshold} * (lbs)			139.9				
			Fu			0.46				
	Rod 16, AR Thd 1, EHE	52.0	Hsr			0.4				
	Rod 3-V-12, 1.0B Thd 4, EHE 35.5 Hsr Strain Rate (x10 ⁻⁸ in/in/sec) Strain Rate (x10 ⁻⁸ in/in/sec) Pthreshold* (lbs) Rod 16, HT 1000 Thd 1, EHE 39.0 Hsr Rod 16, HT 1000 Thd 1, EHE 39.0 Hsr Rod 16, HT 800 Thd 1, EHE 45.5 Fu Rod 16, HT 800 Thd 1, EHE 45.5 Fu Rod 16, HT 800 Thd 1, EHE 45.5 Fu Rod 16, AR Thd 1, EHE 52.0 Pthreshold* (lbs) Fu Rod 16, AR Thd 1, EHE 52.0 Hsr Strain Rate (x10 ⁻⁸ in/in/sec)			1.4						
			(x10 ⁻⁸ in/in/sec)			НЕ Р-ЕНЕ I.1				

AA.2.2 Summary Table:

			p* Fu Comments bs)	26.5 1.08 No Holiday	11.1 1.02 No Holiday	16.4 0.71 Did Not Cra- In Holiday	13.0 0.70 Did Not Cra	53.4 0.87 Cracked Outside Thre.	20.2 0.73 No Holiday	No D AG No Unida
			Step Load I Profile (I	0.4 in/min 32	10/5/2,4 31	10/5/2,4 21	10/5/2,4 21	10/5/2,4 26	10/5/2,4 22	10/5/2/01
			δ£/δt (10 ⁻⁸ s ⁻¹)	3900	2.1	2.2	1.9	1.8	2.1	1 1
			Rsb, Hsrb	1.5	1.4	1.0	1.0	1.1	0.7	70
			G net (ksi)	233.8	222.8	155.1	152.6	188.1	157.7	000
			DTI (niV)	0.60	0.55	0.40	0.39	0.43	0.29	0.15
			Kmax, KIP-EHE (ksivin)	95.2	90.7	63.1	62.1	76.8	64.2	40 Q
			%FS (Pth/Pmax)	100.0%	95.3%	66.3%	65.2%	29.6%	42.4%	701 107
			Pmax, P _{th} (Ibs)	860.8	797.1	561.9	553.8	285.9	237.5	157 8
			Pmax (Ibs)	860.8	797.1	619.9	587.1	300.4	252.0	162.0
			Ptarget (Ibs)	860.8	701.0	702.5	618.0	240.0	280.0	1 RO O
			UTS (ksi)	159	164	159	159	177	218	273
			Hardness (HRC)	35.5	36.5	35.5	35.5	39.0	45.5	52 0
TYL130901	Plane Strain and Hardened Specimens	3"	Environment	Air	Air	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.106V	3 5% NaCI @ -1 106V
LRA JOb No.:	Special Project:	Rod OD:	s/N	Rod 3-V-12, 1.0B Thd 1, FFS	Rod 3-V-12, 1.0B Thd 2, IHE	Rod 3-V-12, 1.0B Thd 3, EHE	Rod 3-V-12, 1.0B Thd 4, EHE	Rod 16, HT 1000 Thd 1, EHE	Rod 16, HT 800 Thd 1, EHE	Pod 16 AB Thd 1 EHF
			L			1.0B	20821	pəuə	ard	н

Summary Table of Test V ASTM F1624 Bolt Specimen Results Special Project: Plane Strain and Hardened Specimens RSL^m (B) 4-pt Bend Test

AA.3 Threaded Specimen Test Results

Figure AA.3-1: Rod 3-V-12, 1.0B Thd 1, Graphical FFS Results

Figure AA.3-2: Rod 3-V-12, 1.0B Thd 2, Graphical IHE Results

AA.3.3 Rod 3-V-12, 1.0B Thd 3, EHE:

Figure AA.3-3: Rod 3-V-12, 1.0B Thd 3, Graphical EHE Results

Figure AA.3-4: Rod 3-V-12, 1.0B Thd 3 EHE Fracture Face

AA.3.4 Rod 3-V-12, 1.0B Thd 4, EHE:

Figure AA.3-5: Rod 3-V-12, 1.0B Thd 4, Graphical EHE Results

Figure AA.3-6: Rod 3-V-12, 1.0B Thd 4 EHE Fracture Face

AA.3.5 Rod 16, HT 1000 Thd 1, EHE:

Figure AA.3-7: Rod 16, HT 1000 Thd 1, Graphical EHE Results

Figure AA.3-8: Rod 16, HT 1000 Thd 1 EHE Fracture Face

AA.3.6 Rod 16, HT 800 Thd 1, EHE:

Figure AA.3-9: Rod 16, HT 800 Thd 1, Graphical EHE Results

Figure AA.3-10: Rod 16, HT 800 Thd 1 EHE Fracture Face

AA.3.7 Rod 16, AR Thd 1, EHE:

Figure AA.3-11: Rod 16, AR Thd 1, Graphical EHE Results

Figure AA.3-12: Rod 16, AR Thd 1 EHE Fracture Face

Appendix BB: Imposed Potentials

BB.1 Description of Sample

Rod samples were received at LRA and visually examined for general condition and major defects. Samples varied in length from 6 to 24 inches. All specimens used in this appendix had potentials imposed other than the -1.106Vsce used throughout Test V. These specimens were machined from rods selected from Rod 1-V-S2-A2-D and Group ID #3 (Rod 3-V-9, Rod 3-V-10, Rod 3-V-11, and Rod 3-V-12).

The 0.4B threaded specimens and 0.4B fatigue pre-cracked specimens machined from rods selected from Group ID #3 were tested at different imposed potentials ranging from -0.800 to -1.200 Vsce.

The 0.4B threaded specimens machined from the rod selected from Rod 1-V-S2-A2-D were tested without any imposed potential while immersed in 3.5% NaCl solution. This exposed the specimens to their Open Current Potential (OCP) imposed by the zinc coating. The measured OCP of the rods from Group ID #1 are more positive than the typical imposed Test V potential of -1.106 Vsce. To avoid anodic corrosion, the adapter and bare steel on the specimens were masked off with stop off lacquer.

From these tests it was verified that a more negative applied voltage versus a saturated calomel reference electrode will result in a more conservative threshold stress intensity than a more positively applied voltage. Further information on these rods can be found in Appendix E Rod 1-V-S2-A2-D, Appendix F Rod 3-V-9, Appendix G Rod 3-V-10, Appendix H Rod 3-V-11, and Appendix I Rod 3-V-12.

BB.2 Summary

Detailed data are listed in the following summary table. The results from this table are summarized in the following "checker board" tables. The highlighted cells represent the threshold for each respective potential.

BB.2.1 Fatigue Pre-cracked Results:

	Test V A	STM F16	24 Bolt Specimen Resul	ts	•	
	Spec	cial Proje	ect: Effect of Potential			
LRA Job No.:	TYL130901					
Special Project:	Effect of Potential					
Product Form:	1e					
Rod OD:	3"	1	1			
	Sample #/ID	HRC	Environment		K-EHE	
				K _{threshold}	57.0	
				DTI _{th}	0.35	
	3-V-12 OD 12, EHE	36.0	3.5% NaCl @ -0.800 V	Fu	0.64	
				Strain Rate		
				(x10 ⁻⁸ in/in/sec)	1.2	
				K.,	53 5	
	3-V-12 OD 7 FHF				0.34	
ъ		25 5	3 5% NaCl @ _0 900 V	Eu	0.54	
cke	5-V-12 00 7, LIL	33.5	5.5% Naci @ -0.500 V	i u Strain Pate	0.00	
cra				$(v_10^{-8} in /in /or c)$	2.5	
Pre-				(xiu in/in/sec)		
le F				K _{threshold}	56.2	
ıtigı				DTI _{th}	0.35	
E	3-V-12 OD 8, EHE	36.0	3.5% NaCl @ -0.900 V	Fu	0.63	
				Strain Rate	2.2	
				(x10 ⁻⁸ in/in/sec)	2.2	
				K _{threshold}	44.2	
				DTI _{th}	0.27	
	3-V-12 OD 9, EHE	36.0	3.5% NaCl @ -0.975 V	Fu	0.50	
				Strain Rate		
				(x10 ⁻⁸ in/in/sec)	1.6	
				(==,,,,		

	Test V A	STM F16	24 Bolt Specimen Resul	ts		
	Spec	cial Proje	ect: Effect of Potential			
LRA Job No.:	TYL130901					
Special Project:	Effect of Potential					
Product Form:	1e					
Rod OD:	3"					
	Sample #/ID	HRC	Environment		K-EHE	
				$K_{threshold}$	29.5	
				DTI _{th}	0.18	
	3-V-11 OD 10, EHE	36.5	3.5% NaCl @ -1.060V	Fu	0.33	
				Strain Rate		
				(x10 ⁻⁸ in/in/sec)	1.9	
				K _{threshold}	31.1	
	3-V-11 OD 11, EHE			DTI _{th}	0.19	
		36.0	3.5% NaCl @ -1.060V	Fu	0.35	
				Strain Rate		
_				(x10 ⁻⁸ in/in/sec)	2.0	
ckec				K _{threshold}	29.2	
-cra	3-V-11 OD 13, EHE			DTI _{th}	0.18	
Pre		35.5	3.5% NaCl @ -1.060V	Fu	0.33	
ne				Strain Rate		
atig				(x10 ⁻⁸ in/in/sec)	1.3	
Щ				K _{threshold}	27.5	
				DTI _{th}	0.17	
	3-V-9 OD 7, EHE	36.5	3.5% NaCl @ -1.200V	Fu	0.31	
				Strain Rate		
				(x10 ⁻⁸ in/in/sec)	1.4	
				K _{threshold}	20.5	
				DTI _{th}	0.13	
	3-V-9 OD 8, EHE	36.0	3.5% NaCl @ -1.200V	Fu	0.23	
				Strain Rate		
				(x10 ⁻⁸ in/in/sec)	0.8	

BB.2.2 Threaded Results:

	Test V AS	5TM F162	4 Bolt Specimen Results		
	Speci	al Projec	ct: Effect of Potential		
LRA Job No.:	TYL130901				
Special Project:	Effect of Potential				
Product Form:	1e				
Rod OD:	3"				
	Sample #/ID	HRC	Environment		P-EHE
				P _{threshold} * (Ibs)	313.1
				Fu	1.03
	3-V-10 Thd 5, EHE	36.5	3.5% NaCl @ -0.850V	Hsr	1.4
				Strain Rate	07
				(x10 ⁻⁸ in/in/sec)	0.7
				P _{threshold} * (lbs)	291.5
				Fu	0.96
	3-V-11 Thd 11 35.5 3.5% NaCl @ -0.950V	Hsr	1.3		
				Strain Rate	1.2
				(x10 ⁻⁸ in/in/sec)	1.2
				P _{threshold} * (lbs)	213.7
				Fu	0.70
	3-V-9 Thd 4, EHE	35.0	3.5% NaCl @ -1.106V	Hsr	1.0
7				Strain Rate	1 0
ideo				(x10 ⁻⁸ in/in/sec)	1.2
Irea				P _{threshold} * (lbs)	213.7
È				Fu	0.70
	3-V-12 1.0B Thd 5, EHE	36.0	3.5% NaCl @ -1.200V	Hsr	0.9
				Strain Rate	
				(x10 ⁻⁸ in/in/sec)	1.9
				P _{threshold} * (lbs)	253.4
				Fu	0.83
	1-V-S2-A2-D Thd 10. EHE	36.0	3.5% NaCl @ OCP	Hsr	11
				Strain Rate	1.1
				$(x10^{-8} in/in/sec)$	0.8
					262.0
				Fu	202.0 0.86
		36.0	3.5% NaCl @ OCD	Her	1.2
	1-V-32-A2-D IIIU 11, ERE	30.0		Strain Rate	1.2
				$(x10^{-8} in/in/sec)$	0.37
Threaded	3-V-9 Thd 4, EHE 3-V-12 1.0B Thd 5, EHE 1-V-S2-A2-D Thd 10, EHE	35.0 36.0 36.0	3.5% NaCl @ -1.106V 3.5% NaCl @ -1.200V 3.5% NaCl @ OCP 3.5% NaCl @ OCP	Strain Rate (x10 ⁻⁸ in/in/sec) P _{threshold} * (lbs) Fu Hsr Strain Rate (x10 ⁻⁸ in/in/sec)	1.3 1.2 213.7 0.70 1.0 1.2 213.7 0.70 0.9 1.9 253.4 0.83 1.1 0.8 262.0 0.86 1.2 0.37

BB.2.3 Summary Table:

Fatigue Pre-cracked											pəpe	элцт							
product Eorm:		Rod OD:	s/N	3-V/-12 OD 12 FHF	3-V-13 OD 7 EHE	3-V-12 OU /, EHE	3-V-12 UU 8, EHE	3-V-12 OD 9, EHE	3-V-11 OD 10, EHE	3-V-11 OD 11, EHE	3-V-11 OD 13, EHE	3-V-9 OD 7, EHE	3-V-9 OD 8, EHE	3-V-10 Thd 5, EHE	3-V-11 Thd 11	3-V-9 Thd 4, EHE	3-V-12 1.08 Thd 5, EHE	1-V-S2-A2-D Thd 10, EHE	1-V-S2-A2-D Thd 11, EHE
Effect of Potential	a i	3"	Environment	3 5% NaCl @ -0 800 V	2 5% NaCl @ -0 000 V	3.5% NACI @ -0.900 V	3.5% Naci @ -0.900 V	3.5% NaCl @ -0.975 V	3.5% NaCl @ -1.060V	3.5% NaCl @ -1.060V	3.5% NaCl @ -1.060V	3.5% NaCl @ -1.200V	3.5% NaCl @ -1.200V	3.5% NaCl @ -0.850V	3.5% NaCl @ -0.950V	3.5% NaCl @ -1.106V	3.5% NaCl @ -1.200V	3.5% NaCl @ OCP	3.5% NaCl @ OCP
			Hardness (HRC)	36.0	35.5	5C	36.0	36.0	36.5	36.0	35.5	36.5	36.0	36.5	35.5	35.0	36.0	36.0	36.0
			UTS (ksi)	167	150	PC1 5	797	162	164	162	159	164	162	164	159	157	162	162	162
			Ptarget (Ibs)	65 O	68.0	0.00	60.0	45.0	59.5	59.5	35.0	40.0	20.0	180.0	362.0	175.0	618.0	204.0	204.0
			Pmax P	78.0	71 1	/T.4	1.2.1	58.5	38.7	41.7	35.0	36.0	29.0	324.0	317.1	335.1	587.2	275.9	295.9
			'max, Pth (Ibs)	616	57.8	0.VC	59.9	49.4	32.6	32.6	31.4	29.9	22.0	314.4	305.2	243.9	554.1	262.6	282.6
			%FS (Pth/Pmax)	66 8%	60 7%	02.7% CF 00/	65.4%	51.8%	34.2%	36.1%	33.9%	31.8%	23.7%	92.3%	85.2%	62.4%	62.7%	77.7%	80.3%
			Kmax, Klscc, Klo-EHE (ksivin)	57.0	53.5	0.50	20.2	44.2	29.5	31.1	29.2	27.5	20.5	91.3	85.0	62.3	62.3	73.9	76.4
			DTI (vin)	0.35	121	U.34	C.S.D	0.27	0.18	0.19	0.18	0.17	0.13	0.56	0.53	0.40	0.39	0.46	0.47
			Gnet (ksi)	195.1	182 5	103.0	193.9	150.2	100.6	108.1	6.66	94.4	70.8	225.4	209.6	150.1	152.9	183.8	189.8
			Rsb, Hsrb	1 2	1 2	7.7	1.2	0.9	0.6	0.7	0.6	0.6	0.4	1.4	1.3	1.0	0.9	1.1	1.2
			δ£/δt (10 ⁸ s ⁻¹)	1 2 2-1	11	4.0 7	7.7	1.6	1.9	2.0	1.3	1.4	0.8	0.7	1.2	1.2	1.9	0.8	0.4
			a (in)	1410	0 2157	10120	0.2159	0.2111	0.2130	0.2200	0.2141	0.2158	0.2170	N/A	N/A	N/A	N/A	N/A	N/A
			Step Load Profile	10/5/1 8	10/5/21	10/2/2/4	TU/ 2, 4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/2,4	10/5/1,8	10/5/1,8	10/5/2,4	10/5/2,4	10/5/1,8	10/5/1.16
			*q (sdl)	1										313.1	291.5	213.7	213.7	253.4	262.0
			Fu	0.64	0.60	0.00	0.63	0.50	0.33	0.35	0.33	0.31	0.23	1.03	96.0	0.70	0.70	0.83	0.86
			Comments											Cracked in Holiday	Did Not Crack In Holiday	Did Not Crack In Holiday	Did Not Crack In Holiday	Did Not Crack In Holiday	No Holidav

Summary Table of Test V ASTM F1624 Bolt Specimen Results Special Project: Effect of Potential RSL[™] (B) 4-pt Bend Test

TYL1309(

LRA Job No.:

BB.3 Fatigue Pre-cracked Specimen Test Results

Figure BB.3-1: Rod 3-V-12 OD 12, Graphical EHE Results

Figure BB.3-2: Fracture Face of Rod 3-V-12 OD 12, EHE

Figure BB.3-3: Rod 3-V-12 OD 7, Graphical EHE Results

Figure BB.3-4: Fracture Face of Rod 3-V-12 OD 7, EHE

Figure BB.3-5: Rod 3-V-12 OD 8, Graphical EHE Results

Figure BB.3-6: Fracture Face of Rod 3-V-12 OD 8, EHE

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Figure BB.3-7: Rod 3-V-12 OD 9, Graphical EHE Results

Figure BB.3-8: Fracture Face of Rod 3-V-12 OD 9, EHE

Figure BB.3-9: Rod 3-V-11 OD 10, Graphical EHE Results

Figure BB.3-10: Fracture Face of Rod 3-V-11 OD 10, EHE

BB.3.6 3-V-11 OD 11, EHE @ -1.060Vsce:

Figure BB.3-11: Rod 3-V-11 OD 11, Graphical EHE Results

Figure BB.3-12: Fracture Face of Rod 3-V-11 OD 11, EHE

Figure BB.3-13: Rod 3-V-11 OD 13, Graphical EHE Results

Figure BB.3-14: Fracture Face of Rod 3-V-11 OD 13, EHE

BB.3.8 3-V-9 OD 7, EHE @ -1.200 Vsce:

Figure BB.3-15: Rod 3-V-9 OD 7, Graphical EHE Results

Figure BB.3-16: Fracture Face of Rod 3-V-9 OD 7, EHE

BB.3.9 3-V-9 OD 8, EHE @ -1.200 Vsce:

Figure BB.3-17: Rod 3-V-9 OD 8, Graphical EHE Results

Figure BB.3-18: Fracture Face of Rod 3-V-9 OD 8, EHE

BB.4 Threaded Specimen Test Results

BB.4.1 3-V-10 Thd 5, EHE @ -0.850 Vsce:

Figure BB.4-1: Rod 3-V-10 Thd 5, Graphical EHE Results

Figure BB.4-2: Rod 3-V-10 Thd 5 EHE Fracture Face

BB.4.2 3-V-11 Thd 11, EHE @ -0.950 Vsce:

Figure BB.4-3: Rod 3-V-11 Thd 11, Graphical EHE Results

Figure BB.4-4: Rod 3-V-11 Thd 11 EHE Fracture Face

Figure BB.4-5: Rod 3-V-9 Thd 4, Graphical EHE Results

Figure BB.4-6: Rod 3-V-9 Thd 4 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

BB.4.4 3-V-12 1.0B Thd 5, EHE @ -1.200 Vsce:

Figure BB.4-7: Rod 3-V-12 1.0B Thd 5, Graphical EHE Results

Figure BB.4-8: Rod 3-V-12 1.0B Thd 5 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

Figure BB.4-9: Rod 1-V-S2-A2-D Thd 10, Graphical EHE Results

Figure BB.4-10: Rod 1-V-S2-A2-D Thd 10 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

LRA R&D Labs/Engineering Consultants POB 10239, Newport Beach, CA 92658

Figure BB.4-11: Rod 1-V-S2-A2-D Thd 11, Graphical EHE Results

Figure BB.4-12: Rod 1-V-S2-A2-D Thd 11 a) Thread Root Post EHE Test V and Pre-Charpy Impact and b) EHE Fracture Face

LRA R&D Labs/Engineering Consultants

POB 10239, Newport Beach, CA 92658